Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(4)>> 691-708     doi: 10.3866/PKU.WHXB201612191         中文摘要
Global Simulations of Enzymatic Catalysis
ZHAO Yuan1, CAO Ze-Xing2
1 Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan Province, P. R. China;
2 Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, Fujian Province, P. R. China
Full text: PDF (3939KB) HTML Export: BibTeX | EndNote (RIS)

Enzymatic catalytic processes generally involve substrate delivery, selective catalytic reaction, and product release. Owing to the complex protein environment effect, any nonchemical or chemical step may determine the enzyme activity. Herein, to comprehensively understand enzymatic activity, extensive combined quantum mechanics/molecular mechanics (QM/MM) and molecular mechanics (MM) molecular dynamics (MD) simulations were carried out on several kinds of enzymes. Possible reaction mechanisms, roles of the conserved residues, and effects of the protein environment on the whole enzymatic process are discussed in detail, which will enrich the knowledge of reactivity in proteins. With the improvement and development of multiscale models and computational methods, it is expected that global simulations of extremely large and complicated enzymes will enable and lend support to enzyme engineering.



Keywords: Enzymatic catalysis   Substrate delivery   Free energy calculations   QM/MM MD simulation   Random acceleration molecular dynamics (DAMD) simulation  
Received: 2016-10-28 Accepted: 2016-12-19 Publication Date (Web): 2016-12-19
Corresponding Authors: CAO Ze-Xing Email: zxcao@xmu.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (21133007, 21373164, 21172053).

Cite this article: ZHAO Yuan, CAO Ze-Xing. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017,33 (4): 691-708.    doi: 10.3866/PKU.WHXB201612191

(1) Albery, W. J.; Knowles, J. R. Biochemistry 1976, 15, 5631. doi: 10.1021/bi00670a032
(2) Chien, Y. H.; Lee, N. C.; Chiang, S. C.; Desnick, R. J.; Hwu, W. L. Mol. Med. 2012, 18, 780. doi: 10.2119/molmed.2012.00002
(3) Fersht, A. Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding; Freeman:New York, 1999.
(4) Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. Science 2004, 303, 186. doi: 10.1126/science.1088172
(5) Macedo, M. F.; Quinta, R.; Pereira, C. S.; Miranda, M. C. S. Mol. Genet. Metab. 2012, 106, 83. doi: 10.1016/j.ymgme.2012.02.014
(6) Mulholland, A. J. Drug Discovery Today 2005, 10, 1393. doi: 10.1016/S1359-6446(05)03611-1
(7) Schomburg, I.; Chang, A.; Placzek, S.; Söhngen, C.; Rother, M.; Lang, M.; Munaretto, C.; Ulas, S.; Stelzer, M.; Grote, A. Nucleic Acids Res. 2012, gks1049. doi: 10.1093/nar/gks1049
(8) Warshel, A.; Sharma, P. K.; Kato, M.; Yu, X.; Liu, H.; Olsson, M. H. M. Chem. Rev. 2006, 106, 3210. doi: 10.1002/chin.200642255
(9) Zhang, X.; Houk, K. Acc. Chem. Res. 2005, 38, 379. doi: 10.1021/ar040257s
(10) Huang, Y. S.; Zhang, G. Y. Biochemistry and Molecular Biology; Science Press: Beijing, 2006. [黄诒森, 张光毅. 生物化学与分子生物学. 北京: 科学出版社, 2006.]
(11) Wu, R.; Gong, W.; Liu, T.; Zhang, Y.; Cao, Z. J. Phys. Chem. B 2012, 116, 1984. doi: 10.1021/jp211403j
(12) Wu, R.; Xie, H.; Cao, Z.; Mo, Y. J. Am. Chem. Soc. 2008, 130, 7022. doi: 10.1021/ja710633c
(13) Xin, Z.; Yuan, Z.; Yan, H.; Cao, Z.; Mo, Y. J. Comput. Chem. 2016, 37, 1163. doi: 10.1002/jcc.24306
(14) Wijeyewickrema, L. C.; Duncan, R. C.; Pike, R. N. Front. Immunol. 2014, 5, 444. doi: 10.3389/fimmu.2014.00444
(15) Chen, N.; Yuan, Z.; Lu, J.; Wu, R.; Cao, Z. J. Chem. Theory Comput. 2015, 11. doi: 10.1021/acs.jctc.5b00045
(16) Zhao, Y.; Chen, N.; Mo, Y.; Cao, Z. Phys. Chem. Chem. Phys. 2014, 16, 26864. doi: 10.1039/c4cp04032e
(17) Zhao, Y.; Chen, N.; Wang, C.; Cao, Z. ACS Catal. 2016, 6, 2145. doi: 10.1021/acscatal.5b02855
(18) Zhao, Y.; Chen, N.; Wu, R.; Cao, Z. Phys. Chem. Chem. Phys. 2014, 16, 18406. doi: 10.1039/c4cp01609b
(19) Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson, M. H. Chem. Rev. 2006, 106, 3210. doi: 10.1021/cr0503106
(20) Carlsson, P. Biophys. J. 2006, 91, 3151. doi: 10.1529/biophysj.106.082917
(21) And, T.W.; Duan, Y. J. Am. Chem. Soc. 2007, 129, 6970. doi: 10.1021/ja0691977
(22) Vashisth, H.; Abrams, C. F. Biophys. J. 2008, 95, 4193. doi: 10.1529/biophysj.108.139675
(23) Long, D.; Mu, Y.; Yang, D. Plos One 2009, 4, e6081. doi: 10.1371/journal.pone.0006081
(24) Peräkylä, M. Eur. Biophys. J. 2009, 38, 185. doi: 10.1007/s00249-008-0369-x
(25) Klvana, M.; Pavlova, M.; Koudelakova, T.; Chaloupkova, R.; Dvorak, P.; Prokop, Z.; Stsiapanava, A.; Kuty, M.; Kuta-Smatanova, I.; Dohnalek, J. J. Mol. Biol. 2009, 392, 1339. doi: 10.1016/j.jmb.2009.06.076
(26) Pavlova, M.; Klvana, M.; Prokop, Z.; Chaloupkova, R.; Banas, P.; Otyepka, M.; Wade, R. C.; Tsuda, M.; Nagata, Y.; Damborsky, J. Nat. Chem. Biol. 2009, 5, 727. doi: 10.1038/nchembio.205
(27) Wang, T.; Duan, Y. J. Mol. Biol. 2009, 392, 1102. doi: 10.1016/j.jmb.2009.07.093
(28) Yao, L.; Li, Y.; Wu, Y.; Liu, A.; Yan, H. Biochemistry 2005, 44, 5940. doi: 10.1021/bi050095n
(29) Wagner, U.; Hasslacher, M.; Griengl, H.; Schwab, H.; Kratky, C. Structure 1996, 4, 811. doi: 10.1016/S0969-2126(96)00088-3
(30) Gartler, G.; Kratky, C.; Gruber, K. J. Biotechnol. 2007, 129, 87. doi: 10.1016/j.jbiotec.2006.12.009
(31) Darden, T.; Becker, O.; Mackerell, A., Jr.; Roux, B.; Watanabe, M.; Becker, O. M.; MacKerell, A. D.; Jr., Roux, B.; Watanabe, M., Eds. 2001, 91.
(32) Frenkel, D.; Smit, B. Understanding Molecular Simulation: from Algorithms to Applications; Academic Press: New York2001; Vol. 1.
(33) Gruber, K.; Gartler, G.; Krammer, B.; Schwab, H.; Kratky, C. J. Biol. Chem. 2004, 279, 20501. doi: 10.1074/jbc.M401575200
(34) Case, D.; Darden, T.; Cheatham, T. E., III.; Simmerling, C.; Wang, J.; Duke, R.; Luo, R.; Walker, R.; Zhang, W.; Merz, K. AMBER 12; University of California: San Francisco, 2012.
(35) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
(36) Berendsen, H. J.; van der Spoel, D.; van Drunen, R. Comput. Phys. Commun. 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E
(37) Lindahl, E.; Hess, B.; Van Der Spoel, D. Mol. Model. Annu. 2001, 7, 306. doi: 10.1007/s008940100045
(38) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
(39) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/jcc.20291
(40) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187. doi: 10.1002/jcc.540040211
(41) Ponder, J.W. TINKER, Software Tools for Molecular Design, Version 4.2;Washington University School of Medicine: SaintLouis, MO, 2004.
(42) Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator; SandiaNational Laboratories, 2007, Vol. 18.
(43) Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227. doi: 10.1016/0022-2836(76)90311-9
(44) Cui, Q.; Karplus, M. J. Chem. Phys. 2000, 112, 1133. doi: 10.1063/1.480658
(45) Friesner, R. A.; Guallar, V. Annu. Rev. Phys. Chem. 2005, 56, 389. doi: 10.1146/annurev.physchem.55.091602.094410
(46) Gao, J.; Amara, P.; Alhambra, C.; Field, M. J. J. Phys. Chem. A 1998, 102, 4714. doi: 10.1021/jp9809890
(47) Hu, H.; Yang, W. Annu. Rev. Phys. Chem. 2008, 59, 573. doi: 10.1146/annurev.physchem.59.032607.093618
(48) Kerdcharoen, T.; Liedl, K. R.; Rode, B. M. Chem. Phys. 1996, 211, 313. doi: 10.1016/0301-0104(96)00152-8
(49) Kouzarides, T. Cell 2007, 128, 693. doi: 10.1016/j.cell.2007.02.005
(50) Lin, H.; Truhlar, D. G. Theor. Chem. Acc. 2007, 117, 185. doi: 10.1007/s00214-006-0143-z
(51) Lyne, P. D.; Hodoscek, M.; Karplus, M. J. Phys. Chem. A 1999, 103, 3462. doi: 10.1021/jp982115j
(52) Mo, Y.; Gao, J. J. Comput. Chem. 2000, 21, 1458. doi: 10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2
(53) Murphy, R.; Philipp, D.; Friesner, R. Chem. Phys. Lett. 2000, 321, 113. doi: 10.1016/S0009-2614(00)00289-X
(54) Murphy, R. B.; Philipp, D. M.; Friesner, R. A. J. Comput. Chem. 2000, 21, 1442. doi: 10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O
(55) Senn, H. M.; Thiel, W. Top. Curr. Chem. 2007, 268, 173. doi: 10.1007/128_2006_084
(56) Senn, H. M.; Thiel, W. Curr. Opin. Chem. Biol. 2007, 11, 182. doi: 10.1016/j.cbpa.2007.01.684
(57) Senn, H. M.; Thiel, W. Angew. Chem. Int. Ed. 2009, 48, 1198. doi: 10.1002/anie.200802019
(58) Vreven, T.; Morokuma, K.; Farkas, Ö.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 2003, 24, 760. doi: 10.1002/jcc.10156
(59) Woodcock, H. L.; Hodoš?ek, M.; Gilbert, A. T.; Gill, P. M.; Schaefer, H. F.; Brooks, B. R. J. Comput. Chem. 2007, 28, 1485. doi: 10.1002/jcc.20587
(60) Zhang, Y. Theor. Chem. Acc. 2006, 116, 43. doi: 10.1007/s00214-005-0008-x
(61) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170. doi: 10.1002/jcc.540160911
(62) Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch, M. J. J. Chem. Theory Comput. 2006, 2, 815. doi: 10.1021/ct050289g
(63) Geerke, D. P.; Thiel, S.; Thiel, W.; van Gunsteren, W. F. J. Chem. Theory Comput. 2007, 3, 1499. doi: 10.1021/ct7000123
(64) Elking, D.; Darden, T.; Woods, R. J. J. Comput. Chem. 2007, 28, 1261. doi: 10.1002/jcc.20574
(65) Chen, J.; Martínez, T. J. Chem. Phys. Lett. 2007, 438, 315. doi: 10.1016/j.cplett.2007.02.065
(66) Kuo, I. F.W.; Mundy, C. J.; McGrath, M. J.; Siepmann, J. I.; VandeVondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed, F. J. Phys. Chem. B 2004, 108, 12990. doi: 10.1021/jp047788i
(67) Amara, P.; Field, M. J. Theor. Chem. Acc. 2003, 109, 43. doi: 10.1007/s00214-002-0413-3
(68) Das, D.; Eurenius, K. P.; Billings, E. M.; Sherwood, P.; Chatfield, D. C.; Hodoš?ek, M.; Brooks, B. R. J. Chem. Phys. 2002, 117, 10534. doi: 10.1063/1.1520134
(69) Eurenius, K. P.; Chatfield, D. C.; Brooks, B. R.; Hodoscek, M.Int. J. Quantum Chem. 1996, 60, 1189. doi: 10.1002/(SICI)1097-461X(1996)60:6<1189::AID-QUA7>3.0.CO;2-W
(70) Ferré, N.; Olivucci, M. J. Mol. Struct.: Theochem 2003, 632, 71. doi: 10.1016/S0166-1280(03)00289-6
(71) Singh, U. C.; Kollman, P. A. J. Comput. Chem. 1986, 7, 718. doi: 10.1002/jcc.540070604
(72) Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem. 2004, 11, 700. doi: 10.1002/jcc.540110605
(73) Zhang, Y.; Liu, H.; Yang, W. J. Chem. Phys. 2000, 112, 3483. doi: 10.1063/1.480503
(74) Zhang, Y. J. Chem. Phys. 2005, 122, 024114. doi: 10.1063/1.1834899
(75) Antes, I.; Thiel, W. J. Phys. Chem. A 1999, 103, 9290. doi: 10.1021/jp991771w
(76) Poteau, R.; Ortega, I.; Alary, F.; Solis, A. R.; Barthelat, J. C.; Daudey, J. P. J. Phys. Chem. A 2001, 105, 198. doi: 10.1021/jp002500k
(77) Yasuda, K.; Yamaki, D. J. Chem. Phys. 2004, 121, 3964. doi: 10.1063/1.1772354
(78) DiLabio, G. A.; Hurley, M. M.; Christiansen, P. A. J. Chem. Phys. 2002, 116, 9578. doi: 10.1063/1.1477182
(79) Kairys, V.; Jensen, J. H. J. Phys. Chem. A 2000, 104, 6656. doi: 10.1021/jp000887l
(80) Assfeld, X.; Rivail, J. L. Chem. Phys. Lett. 1996, 263, 100. doi: 10.1016/S0009-2614(96)01165-7
(81) Ferré, N.; Assfeld, X.; Rivail, J. L. J. Comput. Chem. 2002, 23, 610. doi: 10.1002/jcc.10058
(82) Monard, G.; Loos, M.; Théry, V.; Baka, K.; Rivail, J. L. Int. J. Quantum Chem. 1996, 58, 153. doi: 10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
(83) Pu, J.; Gao, J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 632. doi: 10.1021/jp036755k
(84) Théry, V.; Rinaldi, D.; Rivail, J. L.; Maigret, B.; Ferenczy, G.G. J. Comput. Chem. 1994, 15, 269. doi: 10.1002/jcc.540150303
(85) Zhang, Y.; Lee, T. S.; Yang, W. J. Chem. Phys. 1999, 110, 46. doi: 10.1063/1.478083
(86) Alary, F.; Poteau, R.; Heully, J. L.; Barthelat, J. C.; Daudey, J.P. Theor. Chem. Acc. 2000, 104, 174. doi: 10.1007/s002140000138
(87) Bessac, F.; Alary, F.; Carissan, Y.; Heully, J. L.; Daudey, J. P.; Poteau, R. J. Mol. Struct.: Theochem 2003, 632, 43. doi: 10.1016/S0166-1280(03)00287-2
(88) Carissan, Y.; Bessac, F.; Alary, F.; Heully, J. L.; Poteau, R. Int. J. Quantum Chem. 2006, 106, 727. doi: 10.1002/qua.20837
(89) DiLabio, G. A.; Wolkow, R. A.; Johnson, E. R. J. Chem. Phys. 2005, 122, 044708. doi: 10.1063/1.1839857
(90) Slaví?ek, P.; Martínez, T. J. J. Chem. Phys. 2006, 124, 084107. doi: 10.1063/1.2173992
(91) Gao, J.; Thompson, M. A. Combined Quantum Mechanical and Molecular Mechanical Methods; American ChemicalSociety:Washington, DC, 1998; Vol. 712.
(92) Philipp, D. M.; Friesner, R. A. J. Comput. Chem. 1999, 20, 1468. doi: 10.1002/(SICI)1096-987X(19991115)20:143.0.CO;2-0
(93) Amara, P.; Field, M. J.; Alhambra, C.; Gao, J. Theor. Chem. Acc. 2000, 104, 336. doi: 10.1007/s002140000153
(94) Garcia-Viloca, M.; Gao, J. Theor. Chem. Acc. 2004, 111, 280. doi: 10.1007/s00214-003-0512-9
(95) Pu, J.; Gao, J.; Truhlar, D. G. ChemPhysChem 2005, 6, 1853. doi: 10.1002/cphc.200400602
(96) Jensen, J. H.; Day, P. N.; Gordon, M. S.; Basch, H.; Cohen, D.; Garmer, D. R.; Kraus, M.; Stevens, W. J. ACS Symp. Ser. 1994, 569, 139. doi: 10.1021/bk-1994-0569.ch009
(97) Day, P. N.; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M.; Garmer, D.; Basch, H.; Cohen, D. J. Chem. Phys. 1996, 105, 1968. doi: 10.1063/1.472045
(98) Gordon, M. S.; Freitag, M. A.; Bandyopadhyay, P.; Jensen, J.H.; Kairys, V.; Stevens, W. J. J. Phys. Chem. A 2001, 105, 293. doi: 10.1021/jp002747h
(99) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. J. Comput. Chem. 1992, 13, 1011. doi: 10.1002/jcc.540130812
(100) Souaille, M.; Roux, B. T. Comput. Phys. Commun. 2001, 135, 40. doi: 10.1016/S0010-4655(00)00215-0
(101) Ferrenberg, A. M.; Swendsen, R. H. Phys. Rev. Lett. 1988, 61, 2635. doi: 10.1103/PhysRevLett.61.2635
(102) Grossfield, A. WHAM: the Weighted Histogram Analysis Method, version 2.0.6; Grossfield Lab: Rochester, NY, 2012.http://membrane.urmc.rochester.edu/content/wham
(103) Zwanzig, R.W. J. Chem. Phys. 1954, 22, 1420. doi: 10.1063/1.1740409
(104) Kollman, P. Chem. Rev. 1993, 93. doi: 10.1021/cr00023a004
(105) Jorgensen, W. L. Acc. Chem. Res. 1989, 22, 184. doi: 10.1021/ar00161a004
(106) Kirkwood, J. G. J. Chem. Phys. 1935, 3, 300. doi: 10.1063/1.1749657
(107) Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. 2002, 99, 12562. doi: 10.1073/pnas.202427399
(108) Laio, A.; Rodriguezfortea, A.; Gervasio, F. L.; Ceccarelli, M.; Parrinello, M. J. Phys. Chem. B 2005, 109, 6714. doi: 10.1021/jp045424k
(109) Iannuzzi, M.; Laio, A.; Parrinello, M. Phys. Rev. Lett. 2003, 90, 238302. doi: 10.1103/PhysRevLett.90.238302
(110) Jarzynski, C. Phys. Rev. Lett. 1996, 78, 2690. doi: 10.1103/PhysRevLett.78.2690
(111) Park, S.; Khaliliaraghi, F.; Tajkhorshid, E.; Schulten, K. J. Chem. Phys. 2003, 119, 3559. doi: 10.1063/1.1590311
(112) Park, S.; Schulten, K. J. Chem. Phys. 2004, 120, 5946. doi: 10.1063/1.1651473
(113) Crooks, G. E. Phys. Rev. E: Stat. Phys. Plasmas Fluids 2000, 61, 2361. doi: 10.1103/PhysRevE.61.2361
(114) Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A. Comput. Phys. Commun. 2009, 180, 1961. doi: 10.1016/j.cpc.2009.05.011
(115) Piccinini, E.; Ceccarelli, M.; Affinito, F.; Brunetti, R.; Jacoboni, C. J. Chem. Theory Comput. 2008, 4, 173. doi: 10.1021/ct7001896
(116) Kästner, J. WIREs Comput. Mol. Sci. 2011, 1, 932. doi: 10.1002/wcms.66
(117) Radmer, R. J.; Kollman, P. A. J. Comput. Chem. 1997, 18, 902. doi: 10.1002/(SICI)1096-987X(199705)18:7<902::AID-JCC4>3.0.CO;2-V
(118) Jorgensen, W. L.; Thomas, L. L. J. Chem. Theory Comput. 2008, 4, 869. doi: 10.1021/ct800011m
(119) Aaqvist, J. J. Phys. Chem. 1990, 94, 8021. doi: 10.1021/j100384a009
(120) Darve, E.; Pohorille, A. J. Chem. Phys. 2001, 115, 9169. doi: 10.1063/1.1410978
(121) Hénin, J.; Chipot, C. J. Chem. Phys. 2004, 121, 2904. doi: 10.1063/1.1773132
(122) Comer, J.; Gumbart, J. C.; Hénin, J.; Lelièvre, T.; Pohorille, A.; Chipot, C. J. Phys. Chem. B 2014, 119, 1129. doi: 10.1021/jp506633n
(123) Provasi, D.; Bortolato, A.; Filizola, M. Biochemistry 2009, 48, 10020. doi: 10.1021/bi901494n
(124) Zhang, Z. S.; Wang, Q.; Chen, E. Y. Sci. China Chem. 2014, 44, 854. [张志森, 王琦, 陈尔余. 中国科学:化学, 2014, 44, 854.] doi: 10.1360/N032014-00005
(125) Hou, T.; Guo, S.; Xu, X. J. Phys. Chem. B 2002, 106, 5527. doi: 10.1021/jp015516z
(126) Lepšík, M.; K?í?, Z.; Havlas, Z. Proteins: Struct., Funct., Bioinf. 2004, 57, 279. doi: 10.1002/prot.20192
(127) Brown, S. P.; Muchmore, S.W. J. Chem. Inf. Comput. Sci. 2006, 46, 999. doi: 10.1002/chin.200630220
(128) Alcaro, S.; Artese, A.; Ceccherini-Silberstein, F.; Ortuso, F.; Perno, C. F.; Sing, T.; Svicher, V. J. Chem. Inf. Comput. Sci. 2009, 49, 1751. doi: 10.1021/ci900012k
(129) Hou, T.; Yu, R. J. Med. Chem. 2007, 50, 1177. doi: 10.1021/jm0609162
(130) Stoica, I.; Sadiq, S. K.; Coveney, P. V. J. Am. Chem. Soc. 2008, 130, 2639. doi: 10.1021/ja0779250
(131) Wang, W.; Kollman, P. A. J. Mol. Biol. 2000, 303, 567. doi: 10.1006/jmbi.2000.4057
(132) Gohlke, H.; Case, D. A. J. Comput. Chem. 2004, 25, 238. doi: 10.1002/jcc.10379
(133) Hou, T.; Chen, K.; McLaughlin, W. A.; Lu, B.; Wang, W. PLoS Comput. Biol. 2006, 2, e1. doi: 10.1371/journal.pcbi.0020001
(134) Pearlman, D. A. J. Med. Chem. 2005, 48, 7796. doi: 10.1021/jm050306m
(135) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. J. Med. Chem. 2005, 48, 4040. doi: 10.1021/jm049081q
(136) Hou, T.; Li, N.; Li, Y.; Wang, W. J. Proteome Res. 2012, 11, 2982. doi: 10.1021/pr3000688
(137) Hickel, A.; Hasslacher, M.; Griengl, H. Physiol. Plant. 1996, 98, 891. doi: 10.1111/j.1399-3054.1996.tb06700.x
(138) Lieberei, R.; Selmar, D.; Biehl, B. Plant Syst. Evol. 1985, 150, 49. doi: 10.1007/BF00985567
(139) Gruber-Khadjawi, M.; Purkarthofer, T.; Skranc, W.; Griengl, H. Adv. Synth. Catal. 2007, 349, 1445. doi: 10.1002/chin.200740040
(140) Oroz-Guinea, I.; García-Junceda, E. Curr. Opin. Chem. Biol. 2013, 17, 236. doi: 10.1016/j.cbpa.2013.02.015
(141) Müller, M. ChemBioEng Rev. 2014, 1, 14. doi: 10.1002/cben.201300005
(142) Diebler, J.; von Langermann, J.; Mell, A.; Hein, M.; Langer, P.; Kragl, U. ChemCatChem 2014, 6, 987. doi: 10.1002/cctc.201300965
(143) Purkarthofer, T.; Skranc, W.; Schuster, C.; Griengl, H. Appl. Microbiol. Biotechnol. 2007, 76, 309. doi: 10.1007/s00253-007-1025-6
(144) Holt, J.; Hanefeld, U. ChemInform 2009, 40, 15. doi: 10.1002/chin.200940251
(145) Turner, N. J.; O'Reilly, E. Nat. Chem. Biol. 2013, 9, 285. doi: 10.1038/nchembio.1235
(146) Hanefeld, U. Chem. Soc. Rev. 2013, 42, 6308. doi: 10.1039/C3CS35491A
(147) Sharma, M.; Sharma, N. N.; Bhalla, T. C. Enzyme Microb. Technol. 2005, 37, 279. doi: 10.1016/j.enzmictec.2005.04.013
(148) Dadashipour, M.; Asano, Y. ACS Catal. 2011, 1, 1121. doi: 10.1021/cs200325q
(149) Dreveny, I.; Andryushkova, A. S.; Glieder, A.; Gruber, K.; Kratky, C. Biochemistry 2009, 48, 3370. doi: 10.1021/bi802162s
(150) Versées, W.; Steyaert, J. Curr. Opin. Struct. Biol. 2003, 13, 731. doi: 10.1016/j.sbi.2003.10.002
(151) Downie, M. J.; Kirk, K.; Mamoun, C. B. Eukaryotic Cell 2008, 7, 1231. doi: 10.1128/EC.00159-08
(152) Miles, R.W.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Parkin, D.W.; Schramm, V. L. Biochemistry 1999, 38, 13147. doi: 10.1021/bi990829u
(153) Ranquin, A.; Versées, W.; Meier, W.; Steyaert, J.; Van, G. P.Nano Lett. 2005, 5, 2220. doi: 10.1021/nl051523d
(154) Parkin, D.W. J. Biol. Chem. 1996, 271, 21713. doi: 10.1074/jbc.271.36.21713
(155) Vandemeulebroucke, A.; Versées, W.; De Vos, S.; VanHolsbeke, E.; Steyaert, J. Biochemistry 2003, 42, 12902. doi: 10.1021/bi0347914
(156) Vandemeulebroucke, A.; Versées, W.; Jan Steyaert, A.; Barlow, J. N. Biochemistry 2006, 45, 9307. doi: 10.1021/bi060666r
(157) Barlow, J. N.; Steyaert, J. Biochim. Biophys. Acta 2007, 1774, 1451. doi: 10.1016/j.bbapap.2007.08.027
(158) Versées, W.; Loverix, S.; An, V.; Geerlings, P.; Steyaert, J. J. Mol. Biol. 2004, 338, 1. doi: 10.1016/j.jmb.2004.02.049
(159) Chen, N.; Hu, G.; Xu, J.; Cao, Z.; Wu, R. Biochim. Biophys. Acta 2013, 1834, 1117. doi: 10.1016/j.bbapap.2013.02.005
(160) Warren, L.; Gottschalk, A. Glycoproteins, Their Composition, Structure and Function; Elsevier: Amsterdam, 197; p 1097.
(161) Vincent, F.; Davies, G. J.; Brannigan, J. A. J. Biol. Chem. 2005, 280, 19649. doi: 10.1074/jbc.M502131200
(162) Liu, C.; Li, D.; Liang, Y. H.; Li, L. F.; Su, X. D. J. Mol. Biol. 2008, 379, 73. doi: 10.1016/j.jmb.2008.03.031
(163) Álvarez-Añorve, L. I.; Bustos-Jaimes, I.; Calcagno, M. L.; Plumbridge, J. J. Bacteriol. 2009, 191, 6401. doi: 10.1128/JB.00633-09
(164) Bustos-Jaimes, I.; Sosa-Peinado, A.; Rudiño-Piñera, E.; Horjales, E.; Calcagno, M. L. J. Mol. Biol. 2002, 319, 183. doi: 10.1016/S0022-2836(02)00096-7
(165) Uhde, A.; Youn, J.W.; Maeda, T.; Clermont, L.; Matano, C.; Krämer, R.;Wendisch, V. F.; Seibold, G. M.; Marin, K. Appl. Microbiol. Biotechnol. 2013, 97, 1679. doi: 10.1007/s00253-012-4313-8
(166) Kawada-Matsuo, M.; Mazda, Y.; Oogai, Y.; Kajiya, M.; Kawai, T.; Yamada, S.; Miyawaki, S.; Oho, T.; Komatsuzawa, H. Plos One 2012, 7, e33382. doi: 10.1371/journal.pone.0033382
(167) Liu, L.; Liu, Y.; Shin, H. D.; Chen, R.; Li, J.; Du, G.; Chen, J. Appl. Microbiol. Biotechnol. 2013, 97, 6149. doi: 10.1007/s00253-013-4995-6
(168) Dong, L.; Su-Ying, M. A.; Yang, L. M.; Sun, X. D. Lishizhen Medicine and Materia Medica Research 2008, 19, 836. [董丽, 马素英, 杨利敏, 孙祥德. 时珍国医国药, 2008, 19, 836.] doi: 1008-0805(2008)04-0836-02
(169) Rudino-Pinera, E.; Morales-Arrieta, S.; Rojas-Trejo, S.; Horjales, E. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2001, 58, 10. doi: 10.1107/S0907444901016699
(170) Bühler, H.; Effenberger, F.; Förster, S.; Roos, J.; Priv.-Doz., H. W. ChemBioChem 2003, 4, 211. doi: 10.1002/cbic.200390033
(171) Bühler, H.; Miehlich, B.; Effenberger, F. ChemBioChem 2005, 6, 711. doi: 10.1002/cbic.200400302
(172) Zhang, R.; Monsma, F. Expert Opin. Drug Discovery 2010, 5, 1023. doi: 10.1517/17460441.2010.520700
(173) Xu,W. F. Drug Design; People's Medical Publishing House: Beijing, 2007. [徐文方. 药物设计学. 北京: 人民卫生出版社, 2007.]
(174) Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design, Principle, Method, and Application; Shanghai Scientific & Technical Publishers: Shanghai, 2000. [陈凯先, 蒋华良, 嵇汝运. 计算机辅助药物设计: 原理、方法及应用. 上海: 上海科学技术出版社, 2000.]
(175) Ma, J. A.; Huang, R. Q. Chin. J. Synth. Chem. 2000, 8, 479. [马军安, 黄润秋. 合成化学, 2000, 8, 479.] doi: 10.3969/j.issn.1005-1511.2000.06.004
(176) Zhou, J.; Li, M.; Chen, N.;Wang, S.; Luo, H. B.; Zhang, Y.; Wu, R. ACS Chem. Biol. 2015, 10, 687. doi: 10.1021/cb500767c
(177) Li, S.; Li,W.; Ma, J. Acc. Chem. Res. 2014, 47, 2712. doi: 10.1021/ar500038z
(178) He, X.; Zhu, T.;Wang, X.; Liu, J.; Zhang, J. Z. Acc. Chem. Res. 2014, 47, 2748. doi: 10.1021/ar500077t
(179) Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; Truhlar, D. G. Acc. Chem. Res. 2014, 47, 2731. doi: 10.1021/ar500068a
(180) Pruitt, S. R.; Bertoni, C.; Brorsen, K. R.; Gordon, M. S. Acc. Chem. Res. 2014, 47, 2786. doi: 10.1021/ar500097m
(181) Rao, L.; Chi, B.; Ren, Y.; Li, Y.; Xu, X.;Wan, J. J. Comput. Chem. 2016, 37, 336 doi: 10.1002/jcc.24217
(182) Zhang, L.; Pardo-Avila, F. T.; Unarta, I. C.; Cheung, P. P. H.; Wang, G.;Wang, D.; Huang, X. Acc. Chem. Res. 2016, 49, 687. doi: 10.1021/acs.accounts.5b00536
(183) Bond, P. J.; Sansom, M. S. J. Am. Chem. Soc. 2006, 128, 2697. doi: 10.1021/ja0569104
(184) Gao, Y. Q.; Yang, L. J. Chem. Phys. 2006, 125, 114103. doi: 10.1063/1.2244548
(185) Yang, L.; Shao, Q.; Gao, Y. Q. J. Chem. Phys. 2009, 130, 124111. doi: 10.1063/1.3097129
(186) Zhang, J.; Yang, Y. I.; Yang, L.; Gao, Y. Q. J. Phys. Chem. B 2015, 119, 5518. doi: 10.1021/jp511057f
(187) Dai, X.; Ding, H.; Yin, Q.;Wan, G.; Shi, X.; Qiao, Y. J. Mol. Graphics Modell. 2015, 57, 20. doi: 10.1016/j.jmgm.2015.01.002

1. BAI Shu, ZHOU Rong, LIU Fu-Feng.Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin[J]. Acta Phys. -Chim. Sin., 2013,29(02): 439-448
2. LUO Fang, GAO Jian, CHENG Yuan-Hua, CUI Wei, JI Ming-Juan.Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics Simulations and Free Energy Calculations[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2191-2201
3. HAO Ping, GAO Yun-Yan, OU Zhi-Ze, LI Yi, WANG Zhong-Li, WANG Xue-Song.Preparation of Aminopyridine Grafted Carbon Nanotube and Its Interaction with Horseradish Peroxidase[J]. Acta Phys. -Chim. Sin., 2011,27(01): 233-240
4. BAI Hong-Jun, LAI Lu-Hua.Protein-Protein Interactions: Interface Analysis, Binding Free Energy Calculation and Interaction Design[J]. Acta Phys. -Chim. Sin., 2010,26(07): 1988-1997
5. CUI Wei, ZHANG Huai, JI Ming-Juan.Molecular Dynamics Simulations and Free Energy Calculations of a Novel Series of Protein Tyrosine Phosphatase 1B Difluoromethylenephosphonic Acid Inhibitors[J]. Acta Phys. -Chim. Sin., 2009,25(04): 668-676
6. HU Jian-Ping; KE Guo-Tao; CHANG Shan; CHEN Wei-Zu; WANG Cun-Xin.Conformational Change of HIV-1 Viral DNA after Binding with Integrase[J]. Acta Phys. -Chim. Sin., 2008,24(10): 1803-1810
7. Li Xu-Yuan,Zhao Ke-Hao,Meng Yan-fa,Tu Wei-Xia.Purification and Characterization of β-galactosidases from Cicer Arietinum[J]. Acta Phys. -Chim. Sin., 1996,12(07): 629-634
8. Kan Jin-Qing , Mu Shao-Lin.The Effect of O-phenanthroline on the Kinetics of the Immobilized Uricase Catalyzed Reaction[J]. Acta Phys. -Chim. Sin., 1994,10(07): 648-653
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top