Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (4): 845-852    DOI: 10.3866/PKU.WHXB201612222
ARTICLE     
Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes
Xu ZHEN2,Xue-Jing GUO1,*()
1 College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
2 61413 Troops, Xiangyang 441003, Hubei Provnce, P. R. China
Download: HTML     PDF(1515KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Novel three-dimensional (3D) mesostructured ZnCo2O4 cubes are prepared through a convenient and practical hydrothermal route combined with an annealing treatment. The as-prepared ZnCo2O4 cubes range from 3-4 μm in size, and are composed of a large number of nanoparticles and pores. According to N2 adsorption-desorption measurements, the as-synthesized ZnCo2O4 cubes have a high BET surface area (41.4 m2·g-1) and mesoporous (6.32 nm) nature. Lithium ion batteries (LIBs) are assembled using the as-prepared ZnCo2O4 nanomaterial and metallic lithium as the anode and the cathode, respectively, and their lithium storage performance is investigated. The electrode material exhibits highly reversible lithium storage capacity and strong cycling stability at high current density for 100 cycles. More importantly, the ZnCo2O4 cube electrode still presents a relatively high specific capacity at high rate. The excellent lithium storage performance is attributed to the novel structure of the 3D mesostructured cubes, which can facilitate Li+ diffusion, increase electrode/electrolyte contact area, and endure volume changes the during Li+ insertion/extraction process.



Key wordsZnCo2O4 nanomaterial      Mesostructure      Three-dimensional cube      Lithiumion battery      Anode material     
Received: 10 October 2017      Published: 22 December 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(12HZGJHZ01100)
Corresponding Authors: Xue-Jing GUO     E-mail: 1120130162@mail.nankai.edu.cn
Cite this article:

Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612222     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/845

Fig 1 XRD patterns (A) and crystal structure (B) of as-prepared ZnCo2O4 nanomaterials
Fig 2 Low magnification (A) and high magnification (B) scanning electron microscopy images (SEM) of as-prepared ZnCo2O4 nanomaterials
Fig 3 Low-resolution transmission electron microscopy (TEM) (A-C) and high-resolution TEM (D) images of the as-prepared ZnCo2O4 materials
Fig 4 N2 absorption-desorption isotherm (A) of the as-prepared ZnCo2O4 microspheres and the pore distribution (B)
Fig 5 Cyclic voltammetry (CV) curves at a scan rate of 0.5 mV?s-1 in the voltage window of 0.001-3.0 V
Fig 6 Specific discharge/charge capacities of as-prepared ZnCo2O4 nanomaterials at the current density of 500 mA?g-1
Fig 7 Cyclic performance (A) of as-prepared ZnCo2O4 nanomaterials at the current density of 500 mA?g-1; rate performances (B) at different current densities
Fig 8 SEM images of as-prepared ZnCo2O4 electrode materials after 100 cycles
Fig 9 Nqyuist plots for the EIS of as-prepared ZnCo2O4 nanomaterials and the corresponding equivalent circuit mode ZCO represents ZnCo2O4; Rs is the total resistance of the electrolyte; Rct is the charge-transfer resistance; Cdl represents the double-layer resistance; and Zw is the Warburg impedance.
Sample Current density/(mA?g-1) Cycles Capacity/(mAh?g-1) Reference
3D mesostructure ZnCo2O4 cubes 500 100 600 this work
ZnCo2O4 polypyrrole 100 100 600 28
ZnCo2O4 nanoparticles 100 70 300 29
mesostructured ZnCo2O4 100 100 300 30
Table 1 Compared electrochemical performance of reported ZnCo2O4 nanostructures with different morphologies
Sample Rs Rct Reference
3D mesostructure ZnCo2O4 cubes 3.82 157.03 this work
ZnCo2O4 nanorods 5.14 192 33
orderedmesostructure ZnCo2O4 3.98 190.6 23
ZnCo2O4 polyhedron 12.03 1284.73 34
Table 2 Physicochemical properties measured and calculated from EIS spectra (in Fig.9)
1 Tang Y. P. ; Yuan S. ; Guo Y. Z. ; Huang R. A. ; Wang J. H. ; Yang B. ; Dai Y. N. Acta Phys.-Chim. Sin 2016, 32, 2280.
1 唐艳平; 元莎; 郭玉忠; 黄瑞安; 王剑华; 杨斌; 戴永年. 物理化学学报, 2016, 32, 2280.
2 Tang Z. Y. ; Feng J. J. Acta Phys.-Chim. Sin. 2003, 19, 1025.
2 唐致远; 冯季军. 物理化学学报, 2003, 19, 1025.
3 Gao G. X. ; Wu H. B. ; Ding S. J. ; Lou X. W. Small 2015, 11, 432.
4 Bai J. ; Li X. ; Liu G. ; Qian Y. ; Xiong S. Adv. Funct. Mater. 2014, 24, 3012.
5 Wang M. ; Cheng L. M. ; Li Q. B. ; Chen Z.W. ; Wang S. L. Phys. Chem. Chem. Phys. 2014, 16, 21742.
6 Woo M. A. ; Kim T.W. ; Kim I. Y. ; Hwang S. J. Solid State Ionics 2011, 182, 91.
7 Bresser D. ; Paillard E. ; Kloepsch R. ; Krueger S. ; Fiedler M. ; Schmitz R. ; Baither D. ; Winter M. ; Passerini S. Adv. Energy Mater. 2013, 3, 513.
8 Gao G. X. ; Wu H. B. ; Dong B. T. ; Ding S. J. ; Lou X. W. Adv. Sci. 2015, 2, 1400014.
9 Zhou L. ; Wu H. B. ; Zhu T. ; Lou X. W. J. Mater. Chem. 2012, 22, 827.
10 Luo W. ; Hu X. L. ; Sun Y. M. ; Huang Y. H. J. Mater. Chem. 2012, 22, 8916.
11 Giri A. K. ; Pal P. ; Ananthakumar R. ; Jayachandran M. ; Mahanty S. ; Panda A. B. Cryst. Growth Des. 2014, 14, 3352.
12 Hao S. J. ; Zhang B.W. ; Ball S. ; Copley M. ; Xu Z. C. ; Srinivasan M. ; Zhou K. ; Mhaisalkar S. ; Huang Y. Z. J. Power Sources 2015, 294, 112.
13 Guo L. Y. ; Ru Q. ; Song X. ; Hu S. J. ; Mo Y. D. RSC Adv. 2015, 5, 19241.
14 Hung T. F. ; Mohamed S. G. ; Shen C. C. ; Tsai Y. Q. ; Chang W. S. ; Liu R. S. Nanoscale 2013, 5, 12115.
15 Liu X. H. ; Zhang J. ; Wang L.W. ; Yang T. L. ; Guo X. Z. ; Wu S. H. ; Wang S. R. J. Mater. Chem. 2011, 21, 349.
16 Hou L. ; Lian L. ; Zhang L. ; Pang G. ; Yuan C. ; Zhang X. Adv. Funct. Mater. 2015, 25, 238.
17 Li J. ; Xiong S. ; Li X. ; Qian Y. Nanoscale 2013, 5, 2045.
18 Zhang C. ; Huang B. ; Qian L. H. ; Yuan S. L. ; Wang S. ; A. Chen R. ChemPhysChem 2016, 17, 98.
19 Sun L. ; Zhao Z. ; Zhou Y. ; Liu L. Nanoscale 2012, 4, 613.
20 Qu Q. T. ; Fu L. J. ; Zhan X. Y. ; Samuelis D. ; Maier J. ; Li L. ; Tian S. ; L i ; Z. H. ; Wu Y. P. Energy Environ. Sci. 2011, 4, 3985.
21 Yang X. H. ; Li Z. ; Sun C. H. ; Yang H. G. ; Li C. Z. Chem. Mater. 2011, 23, 3486.
22 Huang Y. H. Acta Phys.-Chim. Sin. 2016, 32, 816.
22 黄云辉. 物理化学学报, 2016, 32, 816.
23 Zhao R. Z. ; Li Q. ; Wang C. X. ; Yin L. W. Electrochim. Acta 2016, 197, 58.
24 Mo Y. D. ; Ru Q. ; Chen J. F. ; Song X. ; Guo L. Y. ; Hu S.J. ; Peng S. M. J. Mater. Chem. A 2015, 3, 19765.
25 Wang Y. J. ; Zhang Y. Z. ; Ou J. K. ; Zhao Q. ; Liao M. ; Xiao D. RSC Adv. 2016, 6, 547.
26 Song X. ; Ru Q. ; Zhang B. ; Hu S. ; An B. J. Alloy. Compd. 2014, 585, 518.
27 Xu J. M. ; He L. ; Wang Y. J. ; Zhang C. J. ; Zhang Y. H. Electrochim. Acta 2016, 191, 417.
28 Huang L. ; Waller G. H. ; Ding Y. ; Chen D. ; Ding D. ; Xi P. ; Wang Z. L. ; Liu M. Nano Energy 2015, 11, 64.
29 Rai A. K. ; Thi T. V. ; Paul B. J. ; Kim J. Electrochim. Acta 2014, 146, 577.
30 Zhong X. B. ; Wang H. Y. ; Yang Z. Z. ; Jin B. ; Jiang Q. C. J. Power Sources 2015, 296, 298.
31 Zhang Z. C. ; Chen Y. F. ; He S. ; Zhang J. C. ; Xu X. B. ; Yang Y. ; Nosheen F. ; Saleem F. ; He W. ; Wang X. Angew. Chem. Int. Edit. 2014, 53, 12517.
32 Luo W. ; Huang L. ; Guan D. D. ; He R. H. ; Li F. ; Mai L. Q. Acta Phys.-Chim. Sin 2016, 32, 1999.
32 罗雯; 黄磊; 关豆豆; 贺汝涵; 李枫; 麦立强. 物理化学学报, 2016, 32, 1999.
33 Liu H.W. ; Wang J. Electrochim. Acta 2013, 92, 371.
34 Ru Q. ; Song X. ; Mo Y. D. ; Guo L. Y. ; Hu S. J. J. Alloy. Compd. 2016, 654, 586.
35 Varzi A. ; Bresser D. ; Zamory J. ; Müller F. ; Passerini S. Adv. Energy Mater. 2014, 4, 1400054.
36 Zou F. ; Hu X. ; Li Z. ; Qie L. ; Hu C. ; Zeng R. ; Jiang Y. ; Huang Y. Adv. Mater. 2014, 26, 6622.
[1] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[2] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[3] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.
[4] HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.
[5] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 573-580.
[6] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2737-2744.
[7] CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 349-355.
[8] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1437-1451.
[9] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1513-1520.
[10] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1521-1526.
[11] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 913-919.
[12] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1650-1658.
[13] LIU Xin, XIE Jing-Ying, ZHAO Hai-Lei, Lü Peng-Peng, WANG Ke, FENG Zhen-He, WANG Meng-Wei. Synthesis and Properties of FeSn2-C Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1281-1289.
[14] ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, GOU Xing-Long. Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites[J]. Acta Physico-Chimica Sinca, 2014, 30(3): 476-484.
[15] FENG Xing-Xing, XIE Jing, HU Geng-Shen, JIA Ai-Ping, XIE Guan-Qun, LUO Meng-Fei. Preparation of Pentaethylenehexamine-Functionalized Mesocellular Silica Foams and Their Application for CO2 Adsorption[J]. Acta Physico-Chimica Sinca, 2013, 29(06): 1266-1272.