Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (4): 780-786    DOI: 10.3866/PKU.WHXB201612291
ARTICLE     
Effect of Pre-Punched Current Collector for Lithiation on the Electrochemical Performance of Lithium-Ion Capacitor
Jiang-Min JIANG,Ping NIE,Sheng-Yang DONG,Yu-Ting WU,Xiao-Gang ZHANG*()
Download: HTML     PDF(1684KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Lithium-ion capacitor (LIC) using commercial activated carbon as the cathode and graphite as the anode was assembled. The graphite anode was pre-lithiated by a fast, efficient internal short approach, which involved placing graphite in direct contact with lithium foil with electrolyte additive. The effect of pre-lithiation on the electrochemical performance of the LIC was investigated using a conventional Cu current collector (CCC) and pre-punched Cu current collector (PCC). The LICs containing a CCC and PCC were named CLIC and PLIC, respectively. Although the CCC had slightly higher pre-lithiation level and higher energy density in the CLIC, it suffered from a considerable decrease in performance at higher charge-discharge rates. Meanwhile, 90.0% of the initial capacity was maintained in the PLIC, whereas that of the CLIC was only 73.2% after 1000 cycles in the voltage range from 2.0 to 3.8 V. The CCC led to solid electrolyte interphase (SEI) film expansion and Li metal plating with direct contact between graphite and lithium metal. The deposited thick SEI layer could weaken the adhesion of active materials and the current collector. Moreover, the expansion of the SEI layer itself produced electrical resistance and electrical contact loss between the active materials and current collector. In contrast, a thin, stable SEI layer formed on the surface of graphite after pre-lithiated using the PCC. Therefore, the PLIC showed better rate and cycle performance with the smaller self-discharge, voltage drop, and resistance than those of the CLIC.



Key wordsLithium-ion capacitor      Pre-punched Cu foil      Prelithiation      SEI film      Current collector     
Received: 20 October 2016      Published: 29 December 2016
MSC2000:  O646  
Fund:  the National Key Basic Research Program of China (973)(2014CB239701);National Natural Science Foundation of China(51372116);National Natural Science Foundation of China(51672128);Natural Science Foundation of Jiangsu Province, China(BK20151468);Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province, China(BY-2015003-7);Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China(PAPD)
Corresponding Authors: Xiao-Gang ZHANG     E-mail: azhangxg@163.com
Cite this article:

Jiang-Min JIANG,Ping NIE,Sheng-Yang DONG,Yu-Ting WU,Xiao-Gang ZHANG. Effect of Pre-Punched Current Collector for Lithiation on the Electrochemical Performance of Lithium-Ion Capacitor. Acta Physico-Chimica Sinca, 2017, 33(4): 780-786.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612291     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/780

Fig 1 Scanning electron microscope (SEM) images of (a) conventional Cu current collector (CCC); (b) pre-punched Cu current collector (PCC); (c) activated carbon (AC) cathode; (d) graphite anode
Fig 2 Schematic diagrams for pre-lithiation by CCC and PCC
Fig 3 (a, b) The first discharge-charge curve of graphite using CCC and PCC after 1 h pre-lithiation; (c, d) the galvanostatic charge-discharge curves at various current rates of CLIC and PLIC in 2.0-4.0 V; (e) cycling performance of CLIC and PLIC in 2.0-3.8 V
Fig 4 Ragone plots of the energy density vs power density of CLIC and PLIC
Fig 5 Images of (a) rest self-discharge after"activation" process; (b) voltage drop at various charge-discharge current densities
Sample IR drop/V
0.1 A?g-1 0.2 A?g-1 0.5 A?g-1 1 A?g-1 2 A?g-1
CLIC 0.029 0.058 0.145 0.291 0.504
PLIC 0.017 0.035 0.088 0.177 0.334
Table 1 Voltage (IR) drop at various charge-discharge current densities
Fig 6 (a) Electrochemical impedance spectroscopy (EIS) curves for CLIC and PLIC at 4 V, (b) electric equivalent circuit used to fit the EIS
Fig 7 Photo of CLIC and PLIC after 1000 cycles
1 Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys.-Chim. Sin 2016, 32, 1062.
1 杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32, 1062.
2 Aravindan V. ; Gnanaraj J. ; Lee Y. S. ; Madhavi S. Chem. Rev 2014, 114, 11619.
3 Liu H. J. ; Xia Y. Y. Prog. Chem 2011, 23, 595.
3 刘海晶; 夏永姚. 化学进展, 2011, 23, 595.
4 Khomenko V. ; Raymundo-Pi?ero E. ; Béguin F. J. Power Sources 2008, 177, 643.
5 Banerjee A. ; Upadhyay K. K. ; Puthusseri D. ; Aravindan V. ; Madhavi S. ; Ogale S. Nanoscale 2014, 6, 4387.
6 Zhang F. ; Zhang T. ; Yang X. ; Zhang L. ; Leng K. ; Huang Y. ; Chen Y. Energy Environ. Sci 2013, 6, 1623.
7 Zhang T. ; Zhang F. ; Zhang L. ; Lu Y. ; Zhang Y. ; Yang X. ; Ma Y. ; Huang Y. Carbon 2015, 92, 106.
8 Zhao E. ; Qin C. ; Jung H. R. ; Berdichevsky G. ; Nese A. ; Marder S. ; Yushin G. ACS Nano 2016, 10, 3977.
9 Choi H. S. ; Im J. H. ; Kim T. ; Park J. H. ; Park C. R. J. Mater. Chem 2012, 22, 16986.
10 Dong S. ; Wang X. ; Shen L. ; Li H. ; Wang J. ; Nie P. ; Wang J. ; Zhang X. J. Electroanal. Chem 2015, 757, 1.
11 Wang H. ; Guan C. ; Wang X. ; Fan H. J. Small 2015, 11, 1470.
12 Sivakkumar S. ; Milev A. S. ; Pandolfo A. Electrochim. Acta 2011, 56, 9700.
13 Sivakkumar S. ; Pandolfo A. Electrochim. Acta 2012, 65, 280.
14 Kim J. H. ; Kim J. S. ; Lim Y. G. ; Lee J. G. ; Kim Y. J. J. Power Sources 2011, 196, 10490.
15 Schroeder M. ; Winter M. ; Passerini S. ; Balducci A. J. Power Sources 2013, 238, 388.
16 Amatucci G. G. ; Badway F. ; Du Pasquier A. ; Zheng T. J. Electrochem. Soc 2001, 148, A930.
17 Zhang J. ; Shi Z. ; Wang C. Electrochim. Acta 2014, 125, 22.
18 Zhang J. ; Wu H. ; Wang J. ; Shi J. ; Shi Z. Electrochim. Acta 2015, 182, 156.
19 Yuan M. R. ; Liu W. Q. ; Zhu Y. F. ; Xu Y. J. ; Zhao F. H. Mater. Rev 2013, 16, 005.
19 袁美蓉; 刘伟强; 朱永法; 徐永进; 赵方辉. 材料导报, 2013, 16, 005.
20 Cao W. ; Greenleaf M. ; Li Y. ; Adams D. ; Hagen M. ; Doung T. ; Zheng J. J. Power Sources 2015, 280, 600.
21 Cao W. ; Zheng J. J. Power Sources 2012, 213, 180.
22 Xu Q. Y. ; Xu Y. J. ; Zhu Y. F. ; Jiang D. D. Mater. Rev 2013, 27, 28.
22 徐启远; 徐永进; 朱永法; 姜冬冬. 材料导报, 2013, 27, 28.
23 Kim M. ; Xu F. ; Lee J. H. ; Jung C. ; Hong S. M. ; Zhang Q. ; Koo C. M. J. Mater. Chem. A 2014, 2, 10029.
24 Cao W. ; Zheng J. J. Electrochem. Soc 2013, 160, A1572.
25 Ping L. N. ; Zheng J. M. ; Shi Z. Q. ; Wang C. Y. Acta Phys.-Chim. Sin 2012, 28, 1733.
25 平丽娜; 郑嘉明; 时志强; 王成扬. 物理化学学报, 2012, 28, 1733.
26 Nie P. ; Shen L. F. ; Chen L. ; Su X. F. ; Zhang X. G. ; Li H. S. Acta Phys.-Chim. Sin 2011, 27, 2123.
26 聂平; 申来法; 陈琳; 苏晓飞; 张校刚; 李洪森. 物理化学学报, 2011, 27, 2123.
27 Gourdin G. ; Smith P. H. ; Jiang T. ; Tran T. N. ; Qu D. J. Electroanal. Chem 2013, 688, 103.
28 Liang K. ; Chen A. ; Feng Z. S. ; Ye Z. X. Acta Phys.-Chim. Sin 2002, 18, 381.
28 梁逵; 陈艾; 冯哲圣; 叶芝祥. 物理化学学报, 2002, 18, 381.
29 Jiang J. M. ; Nie P. ; Ding B. ; Wu W. X. ; Chang Z. ; Wu Y. T. ; Dou H. ; Zhang X. G. ACS Appl. Mater. Interfaces 3092, 6
30 Kumagai S. ; Ishikawa T. ; Sawa N. J. Energy Storage 2015, 2, 1.
[1] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 111-120.
[2] CHEN Qiang, NULI Yanna, YANG Jun, KAILIBINUER Kerimu, WANG Jiulin. Effects of Current Collectors on the Electrochemical Performance of Electrolytes for Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinca, 2012, 28(11): 2625-2631.
[3] FU Mao-Hua, HUANG Ke-Long, LIU Su-Qin, LIU Jian-Sheng, LI Yong-Kun. Effect of Lithium Difluoro(oxalato)borate on the High-Temperature Performance of LiFePO4/Graphite Batteries[J]. Acta Physico-Chimica Sinca, 2009, 25(10): 1985-1990.
[4] TAN Xiao-Lan, CHENG Xin-Qun, MA Yu-Lin, ZUO Peng-Jian, YIN Ge-Ping. Film Formation and Cycleability of LiBOB-Based Electrolyte[J]. Acta Physico-Chimica Sinca, 2009, 25(10): 1967-1971.
[5] FAN Xiao-Yong, ZHUANG Quan-Chao, WEI Guo-Zhen, KE Fu-Sheng, HUANG Ling, DONG Quan-Feng, SUN Shi-Gang. Fabrication and Performance of Cu6Sn5 Alloy Anode Using Porous Cu as Current Collector[J]. Acta Physico-Chimica Sinca, 2009, 25(04): 611-616.
[6] ZHUANG Quan-Tiao, WEI Guo-Zhen, DONG Quan-Feng, SUN Shi-Gang. Influence of Temperature on the Performance of a Graphite Electrode[J]. Acta Physico-Chimica Sinca, 2009, 25(03): 406-410.
[7] LI Fan-Qun; LAI Yan-Qing; ZHANG Zhi-An; GAO Hong-Quan; YANG Juan. Electrochemical Behaviors of Et4NBF4+LiPF6/EC+PC+DMC Electrolyte on Graphite Electrode[J]. Acta Physico-Chimica Sinca, 2008, 24(07): 1302-1306.
[8] XU Meng-Qing; ZUO Xiao-Xi; LI Wei-Shan; ZHOU Hao-Jie; LIU Jian-Sheng; YUAN Zhong-Zhi. Effect of Butyl Sultone on the Li-ion Battery Performance and Interface of Graphite Electrode[J]. Acta Physico-Chimica Sinca, 2006, 22(03): 335-340.
[9] ZHUANG Quan-chao; FAN Xiao-yong; XU Jin-mei; CHEN Zuo-feng; DONG Quan-feng; JIANG Yan-xia; HUANG Ling; SUN Shi-gang. Electrochemical Impedance Spectroscopic Study of the First Delithiation of Spinel Lithium Manganese Oxide[J]. Acta Physico-Chimica Sinca, 2006, 22(02): 234-238.