Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 458-463    DOI: 10.3866/PKU.WHXB201701041
COMMUNICATION     
Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by In situ Liquid Cell Transmission Electron Microscopy
Xiao-Qin ZHOU1,3,Hui ZHANG3,Ze ZHANG3,Xin CHEN1,2,*(),Chuan-Hong JIN3,*()
1 Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
3 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Download: HTML     PDF(923KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

We report an in situ liquid cell scanning transmission electron microscopy (STEM) study of the heterogeneous deposition of palladium (Pd) on spherical gold (Au) nanoparticles in solution. The dynamic processes observed here revealed different behaviors of Pd deposition on Au nanoparticles. Under irradiation by an energetic electron beam, Pd was reduced and selectively deposited on Au nanoparticles through the island deposition mode. The deposition processes were accompanied with structural relaxation and surface migration of the Pd islands, and the size of the Au-Pd composite particles showed oscillatory growth behavior. In contrast, the Pd coverage on Au increased monotonically. In addition, we also captured the formation of Pd clusters through homogeneous nucleation and growth, and the subsequent coalescence of Pd clusters with islands on the Au-Pd heterostructures. The associated heterogeneous deposition mechanisms were proposed and quantitatively analyzed. The shapes and structures of the Au-Pd composite particles were characterized by highresolution transmission electron microscopy (HRTEM), which revealed the deposited Pd on the Au spherical nanoparticles was polycrystalline and contained several Pd crystallites with random orientations. The results presented here will serve as an important reference to understand heterogeneous growth in liquid solutions.



Key wordsIn situ liquid cell TEM      Noble metal nanocrystal      Heterogeneous deposition      Structure relaxation      Surface migration     
Received: 25 November 2016      Published: 04 January 2017
MSC2000:  O648  
Fund:  the Shanghai Leading Academic Discipline Project, China(B502);Shanghai Key Laboratory Project, China(08DZ2230500);Shanghai Committee of Science and Technology Support Project, China(11nm0507000);State Key Laboratory of Functional Materials for Informatics Open Project, China(SKL201306);National Natural Science Foundation of China(51222202)
Corresponding Authors: Xin CHEN,Chuan-Hong JIN     E-mail: xinchen73@ecust.edu.cn;chhjin@zju.edu.cn
Cite this article:

Xiao-Qin ZHOU,Hui ZHANG,Ze ZHANG,Xin CHEN,Chuan-Hong JIN. Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by In situ Liquid Cell Transmission Electron Microscopy. Acta Physico-Chimica Sinca, 2017, 33(3): 458-463.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201701041     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/458

Fig 1 Schematic of the in situ liquid cell
Fig 2 Islands deposition, structure relaxation and migration of Pd on a single Au nanoparticle
Fig 3 Time sequences STEM images showing deposition of Pd on Au nanoparticles and structure relaxation of Pd
Fig 4 Ex-situ TEM and HRTEM images for Au-Pd heterogeneous nano-structures
1 Gu J. ; Zhang Y.W. ; Tao F. F. Chem. Soc. Rev. 2012, 41, 8050.
2 Zhang H. ; Jin M. ; Xia Y. Chem. Soc. Rev. 2012, 41, 8035.
3 Wang D. ; Li Y. Adv. Mater. 2011, 23, 1044.
4 Liu X. ; Wang D. ; Li Y. Nano Today 2012, 7, 448.
5 Fan F. R. ; Liu D. Y. ; Wu Y. F. ; Duan S. ; Xie Z. X. ; Jiang Z.Y. ; Tian Z. Q. J. Am. Chem. Soc. 2008, 130, 6949.
6 Williamson M. J. ; Tromp R. M. ; Vereecken P. M. ; Hull R. ; Ross F. M. Nat. Mater. 2003, 2, 532.
7 de Jonge N. ; Ross F. M. Nat. Nanotechnol. 2011, 6, 695.
8 Zheng H. ; Smith R. K. ; Jun Y.W. ; Kisielowski C. ; Dahmen U. ; Alivisatos A. P. Science 2009, 324, 1309.
9 Grogan J. ; Bau H. Microsc. Microanal. 2011, 17, 532.
10 Chen X. ; Li C. ; Cao H. Nanoscale 2015, 7, 4811.
11 Liao H. G. ; Niu K. ; Zheng H. Chem. Commun. 2013, 49, 11720.
12 Jiang Y. ; Zhu G. ; Lin F. ; Zhang H. ; Jin C. ; Yuan J. ; Yang D. ; Zhang Z. Nano Lett. 2014, 14, 3761.
13 Liu Y. ; Chen X. ; Noh K.W. ; Dillon S. J. Nanotechnology 2012, 23, 385302.
14 Liao H. G. ; Cui L. ; Whitelam S. ; Zheng H. Science 2012, 336, 1011.
15 Sutter E. ; Sutter P. ; Tkachenko A. V. ; Krahne R. ; de Graaf J. ; Arciniegas M. ; Manna L. Nat. Commun. 2016, 7, 11213.
16 Chen X. ; Wen J. Nanoscale Res. Lett. 2012, 7, 598.
17 Liu Y. ; Lin X. M. ; Sun Y. ; Rajh T. J. Am. Chem. Soc. 2013, 135, 3764.
18 Nielsen M. H. ; Aloni S. ; De Yoreo J. J. Science 2014, 345, 1158.
19 Sutter E. ; Jungjohann K. ; Bliznakov S. ; Courty A. ; Maisonhaute E. ; Tenney S. ; Sutter P. Nat. Commun. 2014, 5, 4946.
20 Niu K. Y. ; Liu M. ; Persson K. A. ; Han Y. ; Zheng H. ACS Nano 2016, 10, 6235.
21 Tan S. F. ; Chee S.W. ; Lin G. ; Bosman M. ; Lin M. ; Mirsaidov U. ; Nijhuis C. A. J. Am. Chem. Soc. 2016, 138, 5190.
22 Cao H. ; Miao X. ; Zhu M. ; Li C. ; Wei F. ; Chen X. Nano 2015, 10, 1550086.
23 Wu J. ; Gao W. ; Wen J. ; Miller D. J. ; Lu P. ; Zuo J. M. ; Yang H. Nano Lett. 2015, 15, 2711.
24 Jungjohann K. L. ; Bliznakov S. ; Sutter P.W. ; Stach E. A. ; Sutter E. A. Nano Lett. 2013, 13, 2964.
25 Weiner R. G. ; Chen D. P. ; Unocic R. R. ; Skrabalak S. E. Small 2016, 12, 2701.
26 Schneider N. M. ; Norton M. M. ; Mendel B. J. ; Grogan J. M. ; Ross F. M. ; Bau H. H. J. Phys. Chem. C 2014, 118, 22373.
27 Zhu G. ; Jiang Y. ; Huang W. ; Zhang H. ; Lin F. ; Jin C. ; Yuan J. ; Yang D. ; Zhang Z. Chem. Commun. 2013, 49, 10944.
28 Jones S. ; Evans G. ; Galvin K. Adv. Colloid Interface Sci. 1999, 80, 27.
29 Grogan J. M. ; Schneider N. M. ; Ross F. M. ; Bau H. H. Nano Lett. 2014, 14, 359.
30 Bauer E. ; van der Merwe J. H. Phys. Rev. B 1986, 33, 3657.
[1] GAO Cai;WANG Tie-Jun;ZHOU Guo-Yan;HUA Ze-Zhao . Glass Transition and Structure Relaxation of 1, 2-Propanediol Aqueous Solutions[J]. Acta Physico-Chimica Sinca, 2007, 23(02): 206-211.
[2] GAO Cai; ZHOU Guo-yan. Phenomenological Study of Structure Relaxation of Glycerol Aqueous Glass[J]. Acta Physico-Chimica Sinca, 2005, 21(08): 909-914.