Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(4)>> 670-690     doi: 10.3866/PKU.WHXB201701101         中文摘要
Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells
XIA Rui1, WANG Shi-Mao1, DONG Wei-Wei1,2, FANG Xiao-Dong1,2
1 Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, P. R. China;
2 Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, P. R. China
Full text: PDF (7686KB) HTML Export: BibTeX | EndNote (RIS)

The counter electrode (CE) is an important part of a quantum dot-sensitized solar cell (QDSSC). Improving CE performance is an effective approach to enhance the photovoltaic conversion efficiency of QDSSCs. In this paper, the required properties of CEs are briefly introduced. Recent progress in the study and fabrication methods of QDSSC CEs composed of various materials, including metals, conductive polymers, carbon, metal sulfide, other inorganic metallic compounds, and composites, are reviewed. CEs made of inorganic metallic compounds like copper sulfide, cobalt sulfide, and lead sulfide are the most widely studied because of their high catalytic ability and low cost. Meanwhile, research on CEs made of conductive polymers, new carbon materials, and a variety of composite materials is expanding because of their respective advantages.



Keywords: Quantum dot-sensitized solar cell   Counter electrode   Conductive polymer   Carbon material   Metal sulfide  
Received: 2016-10-21 Accepted: 2017-01-10 Publication Date (Web): 2017-01-10
Corresponding Authors: FANG Xiao-Dong Email: xdfang@aiofm.ac.cn

Fund: The project was supported by the National Natural Science Foundation of China (61306082, 61306083).

Cite this article: XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017,33 (4): 670-690.    doi: 10.3866/PKU.WHXB201701101

(1) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. doi: 10.1021/jp806791s
(2) Ruhle, S.; Shalom, M.; Zaban, A. ChemPhysChem 2010, 11, 2290. doi: 10.1002/cphc.201000069
(3) Murray, C. B.; Noms, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025
(4) Yu, W.W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15, 2854. doi: 10.1021/cm034081k
(5) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.B.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845
(6) Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X. Y. Science 2010, 328, 1543. doi: 10.1126/science.1185509
(7) Fuke, N.; Hoch, L, B.; Koposov, A, Y.; Manner, V.W.; Werder, D. J.; Fukui, A.; Koide, N.; Katayama, H.; Sykora, M.; ACS Nano 2010, 4, 6377. doi: 10.1021/nn101319x
(8) RoSS, R. T.; Nozik, A. J. J. Appl. Phys. 1982, 53, 3813. doi: 10.1063/1.331124
(9) Zaban, A.; Mi?i?, O, I.; Gregg, B. A.; Nozik. A. J. Langmuir 1998, 14, 3153. doi: 10.1021/la9713863
(10) Nishino, Y.; Kobayashi, M.; Shinno, T.; Izumi, K.; Yonezawa, H.; Masui, Y.; Takahira, M. Org. Process. Res. Dev. 2003, 7, 846. doi: 10.1021/op034088n
(11) Du, J.; Du, Z. L.; Hu, J. S.; Pan, Z. X.; Shen, Q.; Sun, J. K.; Long, D. H.; Dong, H.; Sun, L. T.; Zhong, X. H.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 4201. doi: 10.1021/jacs.6b00615
(12) Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Chem. Commun. 2015, 51, 15894. doi: 10.1039/C5CC06759F
(13) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
(14) Yang, Z.; Chen, C. Y.; Liu, C.W.; Chang, H. T. Chem. Commun. 2010, 46, 5485. doi: 10.1039/C0CC00642D
(15) Wei, H. Y.; Wang, G. S.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Acta Phys. -Chim. Sin. 2016, 32, 201. [卫会云, 王国帅, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 物理化学学报, 2016, 32, 201.] doi: 10.3866/PKU.WHXB201512031
(16) Lee, Y. L.; Chang, C. H. J. Power Sources 2008, 185, 584. doi: 10.1016/j.jpowsour.2008.07.014
(17) Tachibana, Y.; Akiyama, H. Y.; Ohtsuka, Y.; Torimoto, T.; Kuwabata, S. Chem. Lett. 2007, 36, 88. doi: 10.1246/cl.2007.88
(18) Meng, K.; Chen, G.; Thampi, R. J. Mater. Chem. A 2015, 3, 23074. doi: 10.1039/C5TA05071E
(19) Hwang, I.; Yong, K. Chem Electro Chem. 2015, 2, 634. doi: 10.1002/celc.201402405
(20) Takurou, N.; Murakami, A.; Grätzel, M. Inorg. Chim. Acta 2008, 361, 572. doi: 10.1016/j.ica.2007.09.025
(21) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.200800940
(22) Wu, C. F.; Wu, Z. X.; Wei, J.; Dong, H.; Gao, Y. C. ECS Electrochem. Lett. 2013, 2, H31. doi: 10.1149/2.007309eel
(23) Raj, C. J.; Prabakar, K.; Savariraj, A. D.; Kim, H. J. Electrochim. Acta 2013, 103, 231. doi: 10.1016/j.electacta.2013.04.016
(24) Yoon, Y. P.; Kim, J. H.; Kang, S. H.; Kim, H.; Choi, C. J.; Kim, K. K.; Ahn, K. S. Appl. Phys. Lett. 2014, 105, 083116. doi: 10.1063/1.4893669
(25) Premkumar, T.; Lee, K.; Geckeler, K. E. Nanoscale 2011, 3, 1482. doi: 10.1039/C0NR00853B
(26) Boronat, M.; Corma, A.; Illas, F.; Radilla, J.; Rodenas, T.; Sabater, M. J. J. Catal. 2011, 278, 50. doi: 10.1016/j.jcat.2010.11.013
(27) Radich, J. G.; Dwyer, R.; Kamat, P. V. J. Phys. Chem. Lett. 2011, 2, 2453. doi: 10.1021/jz201064k
(28) Seol, M.; Ramasamy, E.; Lee, J.; Yong, K. J. Phys. Chem. C 2011, 115, 22018. doi: 10.1021/jp205844r
(29) Seol, M.; Youn, D. H.; Kim, J. K.; Jang, J.W.; Choi, M.; Lee, J. S.; Yong, K. Adv. Energy Mater. 2014, 4, 1300775. doi: 10.1002/aenm.201300775
(30) Dao, V. D.; Choi, Y.W.; Yong, K. J.; Larina, L. L.; Shevaleevskiy, O.; Choi, H. S. J. Power Sources 2015, 274, 831. doi: 10.1016/j.jpowsour.2014.10.095
(31) Shirakawa, H.; Louis, E. L.; MacDiarmid, A. G. J. Chem. Soc. Chem. Commun. 1977, 578. doi: 10.1039/C39770000578
(32) Li, Y. F. Prog. Chem. 2002, 14, 208. [李永舫. 化学进展, 2002, 14, 208.] doi: 10.3321/j.issn:1005-281X.2002.03.007
(33) Saranya, K.; Rameez, M.; Subramania, A. Eur. Polym. J. 2015, 66, 207. doi: 10.1016/j.eurpolymj.2015.01.049
(34) Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2011, 27, 2255. [李靖, 孙明轩, 张晓艳, 崔晓莉. 物理化学学报, 2011, 27, 2255.]
(35) Yeh, M. H.; Lee, C, P.; Chou, C. Y.; Lin, L. Y.; Wei, H. Y.; Chu, C.W.; Vittal, R.; Ho, K. C. Electrochim. Acta 2011, 57, 277. doi: 10.1016/j.electacta.2011.03.097
(36) Shu, T.; Ku, Z. L. J. Alloy. Compd. 2014, 586, 257. doi: 10.1016/j.jallcom.2013.10.027
(37) Shu, T.; Li, X.; Ku, Z. L.; Wang, S.; Wu, S.; Jin, X. H.; Hu, C.D. Electrochim. Acta 2014, 137, 700. doi: 10.1016/j.electacta.2014.06.072
(38) AbdulAlmohsin, S.; Armstrong, J.; Cui, J. B. J. Renew. Sustain. Ener. 2012, 4, 043108. doi: 10.1063/1.4737133
(39) Yue, G. T.; Tan, F. R.; Wu, J. H.; Li, F. M.; Lin, J. M.; Huang, M. L.; Zhang, W. F. RSC. Adv. 2015, 5, 42101. doi: 10.1039/C5RA02867A
(40) Zhu, H.W.; Wei, J. Q.; Wang, K. L.; Wu, D. H. Sol. Energy Mater. Sol. Cells 2009, 93, 1461. doi: 10.1016/j.solmat.2009.04.006
(41) Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S. J. Mater. Chem. A 2014, 2, 4474. doi: 10.1039/C3TA13374E
(42) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544. doi: 10.1149/1.2129709
(43) Huang, Z.; Liu, X. Z.; Li, K. X.; Li, D. M.; Luo, Y. H.; Li, H.; Song, W. B.; Chen, L. Q.; Meng, Q. B. Electrochem. Commun. 2007, 9, 596. doi: 10.1016/j.elecom.2006.10.028
(44) Chen, J. K.; Li, K. X.; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B. Carbon 2009, 47, 2704. doi: 10.1016/j.carbon.2009.05.028
(45) Li, D. M.; Cheng, L. Y.; Zhang, Y. D.; Zhang, Q. X.; Huang, X.M.; Luo, Y. H.; Meng, Q. B. Sol. Energy Mater. Sol. Cells 2014, 120, 454. doi: 10.1016/j.solmat.2013.09.025
(46) Peng, M.; Ma, L, L.; Zhang, Y. G.; Tan, M.; Wang, J. B.; Yu, Y. Mater. Res. Bull. 2009, 44, 1834. doi: 10.1016/j.materresbull.2009.05.015
(47) Dao, V. D.; Kim, P.; Baek, S.; Larina, L. L.; Yong, K.; Ryoo, R.; Ko, S. H.; Choi, H. S. Carbon 2016, 96, 139. doi: 10.1016/j.carbon.2015.09.023
(48) Thostenson, E. T.; Ren, Z. F.; Chou, T.W. Compos. Sci. Technol. 2001, 61, 1899. doi: 10.1016/S0266-3538(01)00094-X
(49) Dong, J. H.; Jia, S. P.; Chen, J. Z.; Li, B.; Zheng, J. F.; Zhao, J.H.; Wang, Z. J.; Zhu, Z. P. J. Mater. Chem. 2012, 22, 9745. doi: 10.1039/C2JM30366C
(50) Song, C.; Du, J. P.; Zhao, J. H.; Feng, S. A.; Du, G. X.; Zhu, Z.P. Chem. Mater. 2009, 21, 1524. doi: 10.1021/cm802852e
(51) Ganapathy, V.; Kong, E. H.; Park, Y. C.; Jang, H. M.; Rhee, S. W. Nanoscale 2014, 6, 3296. doi: 10.1039/c3nr05705d
(52) Hao, F.; Dong, P.; Zhang, J.; Zhang, Y. C.; Loya, P. E.; Hauge, R. H.; Li, J. B.; Lou, J.; Lin, H. Sci. Rep. 2012, 2, 368. doi: 10.1038/srep00368
(53) Zhang, Q. X.; Zhou, S. J.; Li, Q.; Li, H. G. RSC. Adv. 2015, 5, 30617. doi: 10.1039/C5RA02091C
(54) Paul, G. S.; Kim, J. H.; Kim, M. S.; Do, K.; Ko, J.; Yu, J. S. ACS Appl. Mater. Interfaces 2012, 4, 375. doi: 10.1021/am201452s
(55) Liu, L.; Yuan, Z. Y. Prog. Chem. 2014, 26, 756. [刘蕾, 袁忠勇. 化学进展, 2014, 26, 756.] doi: 10.7536/PC131125
(56) Fang, B. Z.; Kim, M.; Fan, S. Q.; Kim, J. H.; Wilkinson, D. P.; Ko, J.; Yu, J. S. J. Mater. Chem. 2011, 21, 8742. doi: 10.1039/c1jm10113g
(57) Fan, S. Q.; Fang, B. Z.; Kim, J. H.; Kim, J. J.; Yu, J. S.; Ko, J. Appl. Phys. Lett. 2010, 96, 063501. doi: 10.1063/1.3313948
(58) Meng, X.; Cui, H. J.; Dong, J. H.; Zheng, J. F.; Zhu, Y. Y.; Wang, Z. J.; Zhang, J.; Jia, S. P.; Zhao, J. H.; Zhu, Z. P. J. Mater. Chem. A 2013, 1, 9469. doi: 10.1039/C3TA10306D
(59) Deng, M. H.; Zhang, Q. X.; Huang, S. Q.; Li, D. M.; Luo, Y.H.; Shen, Q.; Toyoda, T.; Meng, Q. B. Nanoscale Res. Lett. 2010, 5, 986. doi: 10.1007/s11671-010-9592-3
(60) Dao, V. D.; Choi, Y.; Yong, K.; Larina, L. L.; Choi, H. S. Carbon 2015, 84, 383. doi: 10.1016/j.carbon.2014.12.014
(61) Zeng, J. H.; Chen, D.; Wang, Y. F.; Jin, B. B. J. Mater. Chem. C 2015, 3, 12140. doi: 10.1039/C5TC02101D
(62) Seol, M.; Choi, M.; Choi, Y.; Yong, M. J. Electrochem. Soc. 2014, 161, 809. doi: 10.1149/2.0771412jes
(63) Li, C.; Huang, L.; Snigdha, G. P.; Yu, Y. F.; Cao, L. Y. ACS. Nano 2012, 6, 8868. doi: 10.1021/nn303745e
(64) Pushpa, R.; Ghosh, P.; Narasumhan, S.; de Gironcoli, S. Phys. Rev. B 2009, 79, 165406. doi: 10.1103/PhysRevB.79.165406
(65) Denis, P. A. J. Phys. Chem. C 2013, 117, 3895. doi: 10.1021/jp306544m
(66) Shen, S. L.; Wang, Q. B. Chem. Mater. 2013, 25, 1166. doi: 10.1021/cm302482d
(67) Chen, H. N.; Zhu, L. Q.; Liu, H. C.; Li, W. P. J. Phys. Chem. C 2013, 117, 3739. doi: 10.1021/jp309967w
(68) Reynolds, D. C.; Leies, G.; Antes. L. L.; Marburger, R. E. Phys. Rev. 1954, 96, 533. doi: 10.1103/PhysRev.96.533
(69) Jiang, X. C.; Xie, Y.; Lu, J.; He, W.; Zhu, L. Y.; Qian, Y. T. Mater. Chem. 2000, 10, 2193. doi: 10.1039/B002486O
(70) Nair, M. T. S.; Nair, P. K. Semicond. Sci. Technol. 1984, 4, 191. doi: 10.1088/0268-1242/5/12/014
(71) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. Acta Phys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青, 徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204
(72) Pan, Z. X.; Iván, M. S.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X. H.; Bisquert, J. J. Am. Chem. Soc. 2014, 136, 9203. doi: 10.1021/ja504310w
(73) Shen, C.; Sun, L. D.; Koh, Z. Y.; Wang, Q. J. Mater. Chem. A 2014, 2, 2807. doi: 10.1039/c3ta14520d
(74) Zhao, K.; Yu, H. J.; Zhang, H.; Zhong, X. H. J. Phys. Chem. C 2014, 118, 5683. doi: 10.1021/jp4118369
(75) Gurpreet, S. S.; Isabella, C.; Riccardo, M.; Marta, M. N.; Giorgio, S.; Alberto, V. Nano Energy 2014, 6, 200. doi: 10.1016/j.nanoen.2014.04.003"
(76) Peng, Z.; Liu, Y.; Zhao, Y.; Chen, K.; Cheng, Y.; Chen, W.Electrochim. Acta 2014, 135, 276. doi: 10.1016/j.electacta.2014.05.019
(77) Deng, M.; Huang, S.; Zhang, Q.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Chem. Lett. 2010, 39, 1168. doi: 10.1246/cl.2010.1168
(78) Santra, P. K.; Kamat, P. V. J. Am. Chem. Soc. 2012, 134, 2508. doi: 10.1021/ja211224s
(79) Radich, J. G.; Dwyer, R.; Kamat, P. V. J. Phys. Chem. Lett. 2011, 2, 2453. doi: 10.1021/jz201064k
(80) Jiang, Y.; Zhang, X.; Ge, Q. Q.; Yu, B. B.; Zou, Y. G.; Jiang, W. J.; Song, W. G.; Wan, L. J.; Hu, J. S. Nano Lett. 2014, 14, 365. doi: 10.1021/nl404251p
(81) Jiang, Y.; Zhang, X.; Ge, Q. Q.; Yu, B. B.; Zou, Y. G.; Jiang, W. J.; Hu, J. S.; Song, W. G.; Wan, L. J. ACS. Appl. Mater. Interfaces 2014, 6, 15448. doi: 10.1021/am504057y
(82) Jiang, Y.; Yu, B. B.; Liu, J.; Li, Z. H.; Sun, J. K.; Zhong, X. H.; Hu, J. S.; Song, W. G.; Wan, L. J. Nano Lett. 2015, 15, 3088. doi: 10.1021/acs.nanolett.5b00096
(83) Mane, R. S.; Lokhande, C. D. Mater. Chem. Phys. 2000, 65, 1. doi: 10.1016/S0254-0584(00)00217-0
(84) Kalanur, S. S.; Chae, S. Y.; Joo, O. S. Electrochim. Acta 2013, 103, 91. doi: 10.1016/j.electacta.2013.04.041
(85) Savariraj, A. D.; Viswanathan, K. K.; Prabakar, K. ACS Appl. Mater. Interfaces 2014, 6, 19702. doi: 10.1021/am504615x
(86) Xu, J.; Xiao, J. Y.; Dong, J.; Luo, Y. H.; Li, D. M.; Meng, Q. B.Electrochim. Acta 2014, 127, 180. doi: 10.1016/j.electacta.2014.02.020
(87) Gopi, C. V. V. M.; Venkata-Haritha, M.; Kim, S. K.; Rao, S. S.; Punnoose, D.; Kim, H. J. RSC. Adv. 2015, 5, 2963. doi: 10.1039/C4RA12968G
(88) Ke, W. J.; Fang, G. J.; Lei, H.W.; Qin, P. L.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X. Z. J. Power Sources 2014, 248, 809. doi: 10.1016/j.jpowsour.2013.10.028
(89) Wang, F. F.; Dong, H.; Pan, J. L.; Li, J. J.; Li, Q.; Xu, D. S.J. Phys. Chem. C 2014, 118, 19589. doi: 10.1021/jp505737u
(90) Li, L. L.; Zhu, P. N.; Peng, S. J.; Srinivasan, M.; Yan, Q. Y.; Nair, A. S.; Liu, B.; Samakrishna, S. J. Phys. Chem. C 2014, 118, 16526. doi: 10.1021/jp4117529
(91) Sung, S. D.; Lim, I.; Kang, P.; Lee, C. M.; Lee, W. I. Chem. Commun. 2013, 49, 6054. doi: 10.1039/C3CC40754C
(92) Kim, C. S.; Choi, S. H.; Bang, J. H. ACS Appl. Mater. Interfaces 2014, 6, 22078. doi: 10.1021/am505473d
(93) Chen, W. L.; Wang, M.; Qian, T. Y.; Cao, H. L.; Huang, S. S.; He, Q. Q.; Liang, N.; Wang, C.; Zai, J. T. Nano Energy 2015, 12, 186. doi: 10.1016/j.nanoen.2014.12.026
(94) Zhang, H.; Bao, H. L.; Zhong, X. H. J. Mater. Chem. A 2015, 3, 6557. doi: 10.1039/C5TA00068H
(95) Quan, L. L.; Li, W. P.; Zhu, L. Q.; Chang, X.W.; Liu, H. C.RSC Adv. 2014, 4, 32214. doi: 10.1039/C4RA04082A
(96) Kalanur, S. S.; Chae, S. Y.; Joo, O. S. Electrochim. Acta 2013, 103, 91. doi: 10.1016/j.electacta.2013.04.041
(97) Wang, S. M.; Dong, W.W.; Fang, X. D.; Zhou, S.; Shao, J. Z.; Deng, Z. H.; Tao, R. H.; Zhang, Q. L.; Hu, L. H.; Zhu, J.Electrochim. Acta 2015, 154, 47. doi: 10.1016/j.electacta.2014.12.089
(98) Wang, S. M.; Dong, W.W.; Fang, X. D.; Deng, Z. H.; Shao, J.Z.; Hu, L. H.; Zhu, J. Acta Phys. -Chim. Sin. 2014, 30, 873. [王时茂, 董伟伟, 方晓东, 邓赞红, 邵景珍, 胡林华, 朱俊. 物理化学学报, 2014, 30, 873.] doi: 10.3866/PKU.WHXB201403042
(99) Xia, R.; Wang, S. M.; Dong, W.W.; Fang, X. D.; Hu, L. H.; Zhu, J. Electrochim. Acta 2016, 205, 45. doi: 10.1016/j.electacta.2016.04.047
(100) Wang, M. K.; Anghel, A. M.; Marsan, B.; Ha, N. L. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976. doi: 10.1021/ja905970y
(101) Mani, A. D.; Deepa, M.; Ghosal, P.; Subrahmanyam, C.Electrochim. Acta 2014, 139, 365. doi: 10.1016/j.electacta.2014.07.009
(102) Yang, Z.; Chen, C. Y.; Liu, C.W.; Chang, H. T. Chem. Commun. 2010, 46, 5485. doi: 10.1039/C0CC00642D
(103) Yuan, H. L.; Lu, J. F.; Xu, X. B.; Huang, D. K.; Chen, W.; Shen, Y.; Wang, M. K. J. Electrochem. Soc. 2013, 160, 624. doi: 10.1149/2.107309jes
(104) Peng, S. J.; Zhang, T. R.; Li, L. L.; Shen, C.; Cheng, F. Y.; Srinivasan, M.; Yan, Q. Y.; Ramakrishna, S.; Chen, J. Nano Energy 2015, 1, 163. doi: 10.1016/j.nanoen.2015.06.019
(105) Faber, M. S.; Park, K.; Caban-Acevedo, M.; Santra, P. K.; Jin, S. J. Phys. Chem. Lett. 2013, 4, 1843. doi: 10.1021/jz400642e
(106) Luo, Q.; Gu, Y. C.; Li, J. B.; Wang, N.; Lin, H. J. Power Sources 2016, 312, 93. doi: 10.1016/j.jpowsour.2016.02.037
(107) Yang, Z. S.; Chen, C. Y.; Liu, C.W.; Li, C. L.; Chang, H. T.Adv. Energy Mater. 2011, 1, 259. doi: 10.1002/aenm.201000029
(108) Hu, H.W.; Ding, J. N.; Qian, J. F.; Li, Y.; Bai, L.; Yuan, N. Y.Mater. Lett. 2014, 114, 7. doi: 10.1016/j.matlet.2013.09.089
(109) Guo, W. X.; Chen, C.; Ye, M.; Lv, M. Q.; Lin, C. J. Nanoscale 2014, 6, 3656. doi: 10.1039/C3NR06295C
(110) Kung, C.W.; Chen, H.W.; Lin, C. Y.; Huang, K. C.; Vittal, R.; Ho, K. C. ACS Nano 2012, 6, 7016. doi: 10.1021/nn302063s
(111) Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer, P.H.; Bawendi, M. G.; Grade?ak, S.; Bulovi?, V. Adv. Mater. 2013, 25, 2790. doi: 10.1002/adma.201204192
(112) Zhang, Y. G.; Li, Z.; Ouyang, J. Y.; Tsang, S.W.; Lu, J. P.; Yu, K.; Ding, J. F.; Tao, Y. Org. Electron. 2012, 12, 2773. doi: 10.1016/j.orgel.2012.08.009
(113) Cheng, C. Y.; Teng, C. Y.; Li, T. L.; Lee, Y. L.; Teng, H. S.J. Mater. Chem. A 2013, 1, 1155. doi: 10.1039/c2ta00251e
(114) Kim, B. M.; Son, M. K.; Kim, S. K.; Hong, N. Y.; Park, S. Y.; Jeong, M. S.; Seo, H.; Prabakar, K.; Kim, H. J. Electrochim. Acta 2014, 117, 92. doi: 10.1016/j.electacta.2013.11.099
(115) Thulasi-Varma, C. V.; Rao, S. S.; Ikkurthi, K. D.; Kim, S. K.; Kang, T. S.; Kim, H. J.; J. Mater. Chem. C 2015, 3, 10195. doi: 10.1039/c5tc01988e
(116) Yang, Y. Y.; Zhu, L. F.; Sun, H. C.; Huang, X. M.; Luo, Y. H.; Li, D. M.; Meng, Q. B. ACS Appl. Mater. Interfaces 2012, 4, 6162. doi: 10.1021/am301787q
(117) Parand, P.; Samadpour, M.; Esfandiar, A.; Zad, A. I. ACS Photonics 2014, 1, 223. doi: 10.1021/ph400011z
(118) Song, X. H.; Wang, M. Q.; Deng, J. P.; Ju, Y. Y.; Xing, T. Y.; Ding, J. J.; Yang, Z.; Shao, J. Y. J. Power Sources 2014, 269, 661. doi: 10.1016/j.jpowsour.2014.07.044
(119) Gopi, C. V. V. M.; Venkata-Haritha, M.; Ravi, S.; Thulasi-Varma, C. V.; Kim, S. K.; Kim, H. J. J. Mater. Chem. C 2015, 3, 12514. doi: 10.1039/C5TC03138A
(120) Quan, L. L.; Li, W. P.; Zhu, L. Q.; Geng, H. F.; Chang, X.W.; Liu, H. C. J. Power Sources 2014, 272, 546. doi: 10.1016/j.jpowsour.2014.08.111
(121) Geng, H.; Zhu, L.; Li, W.; Liu, H.; Quan, L.; Xi, F.; Su, X.J. Power Sources 2015, 281, 204. doi: 10.1016/j.jpowsour.2015.01.182
(122) Geng, H.; Zhu, L.; Li, W.; Liu, H.; Su, X.; Xi, F.; Chang, X.Electrochim. Acta 2015, 182, 1093. doi: 10.1016/j.electacta.2015.10.033
(123) Kim, H. J.; Kim, D. J.; Rao, S. S.; Savariraj, A. D.; Soo-Kyoung, K.; Son, M. K.; Gopi, C. V. V. M.; Prabakar, K.Electrochim. Acta 2014, 127, 427. doi: 10.1016/j.electacta.2014.02.019
(124) Gopi, C. V. V. M.; Rao, S. S.; Kim, S. K.; Punnoose, D.; Kim, H. J. J. Power Sources 2015, 275, 547. doi: 10.1016/j.jpowsour.2014.11.038
(125) Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S.J. Phys. Chem. C 2014, 118, 21347. doi: 10.1021/jp506288w
(126) Scragg, J. J.; Dale, P. J.; Peter, L. M.; Zoppi, G.; Forbes, I.Phys. Status Solidi (b) 2008, 245, 1772. doi: 10.1002/pssb.200879539
(127) Guo, Q. J.; Hillhouse, H.W.; Agrawal, R. J. Am. Chem. Soc. 2009, 113, 11672. doi: 10.1021/ja904981r
(128) Riha, S. C.; Parkinson, B. A.; Prieto, A. L. J. Am. Chem. Soc. 2009, 131, 12054. doi: 10.1021/ja9044168
(129) Guo, Q.; Ford, G. M.; Yang, W. C.; Walker, B. C.; Stach, E. A.; Hillhouse, H.W.; Agrawal, R. J. Am. Chem. Soc. 2010, 132, 17384. doi: 10.1021/ja108427b
(130) Dai, P. C.; Zhang, G.; Chen, Y. C.; Jiang, H. C.; Feng, Z. Y.; Lin, Z. J.; Zhan, J. H. Chem. Commun. 2012, 48, 3006. doi: 10.1039/C2CC17652A
(131) Xin, X.; He, M.; Han, W.; Jung, J.; Lin, Z. Angew. Chem. Int. Ed. 2011, 50, 11739. doi: 10.1002/anie.201104786
(132) Wang, J.; Xin, X. K.; Lin, Z. Q. Nanoscale 2011, 3, 3040. doi: 10.1039/C1NR10425J
(133) Xu, J. X.; Yang, X.; Yang, Q. D.; Wong, T. L.; Lee, C. S.J. Phys. Chem. C 2012, 116, 19718. doi: 10.1021/jp306628m
(134) Zeng, X.W.; Zhang, W. J.; Xie, Y.; Xiong, D. H.; Chen, W.; Xu, X. B.; Wang, M. K.; Cheng, Y. B. J. Power Sources 2013, 226, 359. doi: 10.1016/j.jpowsour.2012.11.023
(135) Xiao, J.W.; Zeng, X.W.; Chen, W.; Xiao, F.; Wang, S. Chem. Commun. 2013, 49, 11734. doi: 10.1039/C3CC44242J
(136) Saloniemi, H.; Kanniainen, T.; Ritala, M.; Leskelä, M.; Lappalainen, R. Thin Solid Films 1998, 8, 78. doi: 10.1016/S0040-6090(98)00524-0
(137) Cao, Y. B.; Xiao, Y. J.; Jung, J. Y.; Um, H. D.; Jee, S.W.; Choi, H. M.; Bang, J. H.; Lee, J. H. ACS. Appl. Mater. Interfaces 2013, 5, 479. doi: 10.1021/am302522c
(138) Zeng, X.W.; Xiong, D. H.; Zhang, W. J.; Ming, L. Q.; Xu, Z.; Huang, Z. F.; Wang, M. K.; Chen, W.; Cheng, Y. B. Nanoscale 2013, 5, 6992. doi: 10.1039/c3nr01564e
(139) Liu, F.; Zhu, J.; Li, Y.; Wei, J. F.; Lv, M.; Xu, Y. F.; Zhou, L.; Hu, L. H.; Dai, S. Y. J. Power Sources 2015, 292, 7. doi: 10.1016/j.jpowsour.2015.05.038
(140) Choi, H. M.; Ji, I. A.; Bang, J. H. ACS Appl. Mater. Interfaces 2014, 6, 2335. doi: 10.1021/am404355m
(141) Chen, X. Q.; Li, Z.; Bai, Y.; Sun, Q.; Wang, L. Z.; Dou, S. X.Chem. Eur. J. 2015, 21, 1055. doi: 10.1002/chem.201405354
(142) Bai, Y.; Han, C.; Chen, X. Q.; Yu, H.; Zong, X.; Li, Z.; Wang, L. Z. Nano Energy 2015, 13, 609. doi: 10.1016/j.nanoen.2015.04.002
(143) Liu, F.; Zhu, J.; Hu, L. H.; Zhang, B.; Yao, J. X.; Nazeeruddin, M. K.; Grätzel, M.; Dai, S. Y. J. Mater. Chem. A 2015, 3, 6315. doi: 10.1039/c5ta00028a
(144) Eskandari, M.; Ahmadi, V. Mater. Lett. 2015, 142, 308. doi: 10.1016/j.matlet2014.12.071
(145) Ma, C. Q.; Tang, Q.W.; Zhao, Z. Y.; Hou, M. J.; Chen, Y. R.; He, B. L.; Yu, L. M. J. Power Sources 2015, 278, 183. doi: 10.1016/j.jpowsour.2013.10.104
(146) Guo, W.; Shen, Y. H.; Wu, M. X.; Wang, L.; Wang, L. L.; Ma, T. L. Chem. Eur. J. 2012, 18, 7862. doi: 10.1002/chem.201103904
(147) Yeh, M. H.; Lin, L. Y.; Lee, C. P.; Chou, C. Y.; Tsai, K.W.; Lin, J. T.; Ho, K. C. J. Power Sources 2013, 237, 141. doi: 10.1016/j.jpowsour.2013.02.092
(148) Youn, D. H.; Seol, M.; Kim, J. Y.; Jang, J.W.; Choi, Y.; Yong, K.; Lee, J. S. ChemSuSChem. 2013, 6, 261. doi: 10.1002/cssc.201200775
(149) Seol, M.; Youn, D. H.; Kim, J. Y.; Jang, J.W.; Choi, M.; Lee, J.S.; Yong, K. Adv. Energy Mater. 2014, 4, 1300775. doi: 10.1002/aenm.201300775
(150) Kang, J. S.; Park, M. A.; Kim, J. Y.; Park, S. H.; Chung, D. Y.; Yu, S. H.; Kim, J.; Park, J.; Choi, J.W.; Lee, K. J.; Jeong, J.; Ko, M. J.; Ahn, K. S.; Sung, Y. E. Sci. Rep. 2015, 5, 10450. doi: 10.1038/srep10450

1. LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng.Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017,33(2): 329-343
2. SHI Ji-Fu, HUANG Qi-Zhang, WAN Qing-Cui, XU Xue-Qing, LI Chun-Sheng, XU Gang.Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(4): 822-827
3. WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian.Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016,32(3): 728-736
4. XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying.Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2427-2446
5. WEI Hui-Yun, WANG Guo-Shuai, WU Hui-Jue, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo.Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(1): 201-213
6. HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han.Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1715-1726
7. LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping.Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. -Chim. Sin., 2015,31(4): 676-684
8. WANG Yu-Qiao, WANG Pan-Pan, LU Jing, BAI Yi-Chao, GU Yun-Liang, SUN Yue-Ming.Dye-Sensitized Solar Cells Based on MWCNT/TiO2 Counter Electrode and Thiolate/Disulfide Non-Iodine Redox Couple[J]. Acta Phys. -Chim. Sin., 2015,31(3): 448-456
9. SU Jia, LU Shan, WANG Sha-Sha, ZHANG Xue-Hua, FU Yu-Bin, HE Tao.Influence of pH Values on the Structure and Performance of a Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1487-1494
10. ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan.Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1495-1500
11. ZHU De-Hua, ZHONG Rong, CAO Yu, PENG Zhi-Hui, FENG Ai-Xin, XIANG Wei-Dong, ZHAO Jia-Long.Size-Dependent Electron Injection and Photoelectronic Properties of CuInS2 Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(10): 1861-1866
12. ZHU Lei, QIANG Ying-Huai, ZHAO Yu-Long, GU Xiu-Quan, SONG Duan-Ming, SONG Chang-Bin.Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(11): 2339-2344
13. LI Wen-Zhe, WANG Li-Duo, GAO Rui, DONG Hao-Peng, NIU Guang-Da, GUO Xu-Dong, QIU Yong.Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices[J]. Acta Phys. -Chim. Sin., 2013,29(11): 2345-2353
14. GUO Xu-Dong, Ma Bei-Bei, WANG Li-Duo, GAO Rui, DONG Hao-Peng, QIU Yong.Electron Injection and Photovoltaic Properties in CdSe/ZnS Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1240-1246
15. ZHU Jun, YU Xue-Chao, WANG Shi-Mao, DONG Wei-Wei, HU Lin-Hua, FANG Xiao-Dong, DAI Song-Yuan.Application of Cu2S Counter Electrode in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(03): 533-538
16. WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao.Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(03): 516-524
17. WANG Yu, JIANG Jun-Cong, ZHU Yue-Xiang, XIE You-Chang.Applications of Monolayer-Dispersed Organic Compounds in the Preparation of Related Materials[J]. Acta Phys. -Chim. Sin., 2012,28(10): 2327-2335
18. CHU Ling-Ling, GAO Yu-Rong, WU Ming-Xing, WANG Lin-Lin, MA Ting-Li.Fabrication and Application of a Carbon Counter Electrode with Excellent Adhesion Properties for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(07): 1739-1744
19. WANG Yu, DONG Hui, GENG Liang, YU Gang, ZHU Yue-Xiang, XIE You-Chang.Facile Synthesis of Bimodal Mesoporous Carbon with Thin Pore Walls[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1525-1532
20. SHI Ji-Fu, FAN Ye, XU Xue-Qing, XU Gang, CHEN Li-Hua.Influence of Preparation Conditions on the Properties of Cu2S Photocathodes[J]. Acta Phys. -Chim. Sin., 2012,28(04): 857-864
21. LI Jing, SUN Ming-Xuan, ZHANG Xiao-Yan, CUI Xiao-Li.Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2255-2268
22. SHI Ji-Fu, WAN Qing-Cui, XU Gang, XU Xue-Qing, FAN Ye.Influence of Temperature on the Properties of Polysulfide Electrolyte and Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2360-2366
23. GAN Li-Hua, LIU Ming-Xian, CHEN Long-Wu, HU Jun, LIU Hong-Lai.Effect of Catalysts on the Morphologies of Carbon Materials Synthesized by an Emulsion Templating Method[J]. Acta Phys. -Chim. Sin., 2010,26(10): 2666-2671
24. HU Yao-Juan, JIN Juan, ZHANG Hui, WU Ping, CAI Chen-Xin.Graphene: Synthesis, Functionalization and Applications in Chemistry[J]. Acta Phys. -Chim. Sin., 2010,26(08): 2073-2086
25. XU Jian-Hua; YANG Ya-Jie; JIANG Ya-Dong; YU Jun-Sheng.Synthesis of Ordered Conducting Polymer Ultrathin Film and Its Application as Hole Injection Layer for Organic Light-Emitting Diode[J]. Acta Phys. -Chim. Sin., 2009,25(01): 19-24
26. SHI Cheng-Wu, GE Qian, LI Bing, TAO Li, LIU Qing-An.Influence of Additives on the Performance of Electrolytes in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2008,24(12): 2327-2330
27. YANG Ya-Jie; JIANG Ya-Dong; XU Jian-Hua.Preparation and Properties of Conducting Polymeric Ultrathin Films[J]. Acta Phys. -Chim. Sin., 2007,23(04): 484-488
28. Chen Yan-Zhen; Gu Zhi-Jun; Tian Zhong-Qun.Photoelectrochemical Polymerization of Conducting Polymer Monomers[J]. Acta Phys. -Chim. Sin., 1993,9(02): 277-280
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top