Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (4): 670-690    DOI: 10.3866/PKU.WHXB201701101
REVIEW     
Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells
Rui XIA1,Shi-Mao WANG1,Wei-Wei DONG1,2,Xiao-Dong FANG1,2,*()
1 Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, P. R. China
2 Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, P. R. China
Download: HTML     PDF(7686KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The counter electrode (CE) is an important part of a quantum dot-sensitized solar cell (QDSSC). Improving CE performance is an effective approach to enhance the photovoltaic conversion efficiency of QDSSCs. In this paper, the required properties of CEs are briefly introduced. Recent progress in the study and fabrication methods of QDSSC CEs composed of various materials, including metals, conductive polymers, carbon, metal sulfide, other inorganic metallic compounds, and composites, are reviewed. CEs made of inorganic metallic compounds like copper sulfide, cobalt sulfide, and lead sulfide are the most widely studied because of their high catalytic ability and low cost. Meanwhile, research on CEs made of conductive polymers, new carbon materials, and a variety of composite materials is expanding because of their respective advantages.



Key wordsQuantum dot-sensitized solar cell      Counter electrode      Conductive polymer      Carbon material      Metal sulfide     
Received: 21 October 2016      Published: 10 January 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(61306082);the National Natural Science Foundation of China(61306083)
Corresponding Authors: Xiao-Dong FANG     E-mail: xdfang@aiofm.ac.cn
Cite this article:

Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201701101     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/670

Fig 1 Structure and working principle of quantum dot-sensitized solar cells (QDSSCs)1 VB: valence band; CB: conduction band; Ox: oxidized species; Red: reduced species
Fig 2 Reduction of the electrolyte at the counter electrode (CE), the recommended properties of counter materials for usage as counter electrodes
Fig 3 Surface scanning electron microscope (SEM) images of (a) PEDOT, (b) PT, and (c) PPy35 PEDOT: poly (3, 4-ethylenedioxy-thiophene), PT: polythiophene, PPy: polypyrrole
Fig 4 (a) Digital images of QDSSCs with a large area (12.97 cm2); (b) current density-voltage (JV) curves and power density curves of the assembled QDSSCs45
Fig 5 SEM images of (a) N-HCNPs49, (b) CSCNPs50, (c) CNF51, (d) VASWCNTs52, (e) C60 53, and (f) HCMSC54 N-HCNPs: nitrogen-doped hollow carbon nanoparticles, CSCNPs: core-shell carbon nanoparticles, CNF: carbon nanofibers, VASWCNTs: vertically aligned single-walled carbon nanotubes, HCMSC: hollow core-mesoporous shell carbon
Fig 6 (a) Schematic diagram for mesoporous carbon materials synthesized by templates; (b) SEM images of mesoporous carbon nanofibers, MCNFs; (c) current density-voltage (J-V) curves of the assembled QDSSCs56
Fig 7 (a) Synthetic strategies for preparing the metal/CNT-RGO counter electrode; (b) cross-sectional SEM images of the metal/CNT-RGO counter electrode; (c) schematic diagram showing the charge transfer mechanisms at the counter electrode63 GO: graphene oxide; CNT: carbon nanotube; RGO: reduced graphene oxide; NPs: nanoparticles; FTO: fluorine-doped tin oxide
Fig 8 (a) SEM images of Cu2S prepared by ion exchange method and (b) time-varying transient photocurrent of the corresponding QDSSCs 73; (c) SEM image of the Cu2S counter electrode prepared by electrodeposition and (d) the J-V curves of the corresponding QDSSCs and the temporal evolution of PCE for the cell74 ITO: indium tin oxide
Fig 9 (a) Synthesis process of RGO/Cu2S composite counter electrode; (b) SEM images of RGO/Cu2S; (c) J-V curves of Pt and RGO/Cu2S with different component ratio counter electrode78
Fig 10 (a) Schematic diagram for the synthesis of ITO/ Cu2S nanowires array on FTO SEM images of ITO/Cu2S nanowires array; under (b) low magnifications and (c) high magnifications80, 81; (d) schematic illustration of the fabrication of hierarchically assembled ITO/Cu2S nanowire arrays on FTO; (e) SEM images of ITO nanowires; (f) SEM images of hierarchically assembled ITO/Cu2S nanowire arrays82
Fig 11 SEM images of CuS counter electrode with different preparation methods (a) CBD85; (b) CBD+TiCl4 treatment86; (c) Mn doped87; (d) hydrothermal method88; (e) electrodeposition89; (f) CuS prepared on EC substrate90
Fig 12 (a) X-ray diffraction (XRD) patterns of CuS, Cu1.12S, Cu1.75S, Cu1.8S; (b) Tafel curves and (c) electrochemical impedance spectroscopy of the assembled symmetrical cell; (d) J-V curves of the assembled QDSSCs92
Fig 13 (a) SEM images of Cu doped CoS, the inset is the photograph of the counter electrode; (b) stability test of the assembled QDSSCs104
Fig 14 (a) Spiral model of QDSSC; (b) structure and working principle of the QDSSC; surface SEM image of the counter electrode under (c) high magnification (d) low magnification109
Fig 15 Surface SEM images of the PbS counter electrode prepared by (a) SILAR method and (b) CBD method; (c) absorbance spectra of TiO2/CuInS2/CdS/ZnS layer and PbS counter electrode; (d) EIS spectra of Pt, CuS, and PbS counter electrodes with different times of deposition (e) J-V curves of QDSSCs using PbS, CuS, Pt counter electrodes113 SILAR: successive ionic layer adsorption and reaction
Fig 16 Surface SEM images of (a) nanosheet CZTS133; (b) CZTS and (c) CZTSe prepared by spray deposition134, (d) single crystal nanorod array of NiCo2S4135 CZTS: Cu2ZnSnS4, CZTSe: Cu2ZnSnSe4
Fig 17 (a) J-V curves of QDSSCs using Cu1.8Se, PbSe, NiSe2, CoSe2, MoSe, Bi2Se3, WSe2, and MnSe used as counter electrodes; (b) electrochemical impedance spectroscopy of Cu1.8Seand PbSe counter electrode140
Fig 18 (a) SEM and (b) TEM images of Cu2-xSe counter electrode on Cu nanowires; (c) J-V curves of QDSSCs employing Cu2-xSe, Cu2-xS, and Au; (d) electrochemical impedance spectroscopy of Cu2-xSe counter electrode prepared with different time141
1 Kamat P. V. J. Phys. Chem. C 2008, 112, 18737.
2 Ruhle S. ; Shalom M. ; Zaban A. ChemPhysChem 2010, 11, 2290.
3 Murray C. B. ; Noms D. J. ; Bawendi M. G. J. Am. Chem. Soc. 1993, 115, 8706.
4 Yu W.W. ; Qu L. H. ; Guo W. Z. ; Peng X. G. Chem. Mater. 2003, 15, 2854.
5 Semonin O. E. ; Luther J. M. ; Choi S. ; Chen H. Y. ; Gao J.B. ; Nozik A. J. ; Beard M. C. Science 2011, 334, 1530.
6 Tisdale W. A. ; Williams K. J. ; Timp B. A. ; Norris D. J. ; Aydil E. S. ; Zhu X. Y. Science 2010, 328, 1543.
7 Fuke N. ; Hoch L.B. ; Koposov A.Y. ; Manner V.W. ; Werder D.J. ; Fukui A. ; Koide N. ; Katayama H. ; Sykora M. ACS Nano 2010, 4, 6377.
8 RoSS R. T. ; Nozik A. J. J. Appl. Phys. 1982, 53, 3813.
9 Zaban A. ; Mi?i? O.I. ; Gregg B. A. ; Nozik A. J. Langmuir 1998, 14, 3153.
10 Nishino Y. ; Kobayashi M. ; Shinno T. ; Izumi K. ; Yonezawa H. ; Masui Y. ; Takahira M. Org. Process. Res. Dev. 2003, 7, 846.
11 Du J. ; Du Z. L. ; Hu J. S. ; Pan Z. X. ; Shen Q. ; Sun J. K. ; Long D. H. ; Dong H. ; Sun L. T. ; Zhong X. H. ; Wan L. J. J. Am. Chem. Soc. 2016, 138, 4201.
12 Kakiage K. ; Aoyama Y. ; Yano T. ; Oya K. ; Fujisawa J. I. ; Hanaya M. Chem. Commun. 2015, 51, 15894.
13 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
14 Yang Z. ; Chen C. Y. ; Liu C.W. ; Chang H. T. Chem. Commun. 2010, 46, 5485.
15 Wei H. Y. ; Wang G. S. ; Wu H. J. ; Luo Y. H. ; Li D. M. ; Meng Q. B. Acta Phys.-Chim. Sin. 2016, 32, 201.
15 卫会云; 王国帅; 吴会觉; 罗艳红; 李冬梅; 孟庆波. 物理化学学报, 2016, 32, 201.
16 Lee Y. L. ; Chang C. H. J. Power Sources. 2008, 185, 584.
17 Tachibana Y. ; Akiyama H. Y. ; Ohtsuka Y. ; Torimoto T. ; Kuwabata S. Chem. Lett. 2007, 36, 88.
18 Meng K. ; Chen G. ; Thampi R. J. Mater. Chem. A 2015, 3, 23074.
19 Hwang I. ; Yong K. Chem Electro Chem 2015, 2, 634.
20 Takurou N. ; Murakami A. ; Gr?tzel M. Inorg. Chim. Acta. 2008, 361, 572.
21 Lee Y. L. ; Lo Y. S. Adv. Funct. Mater. 2009, 19, 604.
22 Wu C. F. ; Wu Z. X. ; Wei J. ; Dong H. ; Gao Y. C. ECS Electrochem. Lett. 2013, 2, H31.
23 Raj C. J. ; Prabakar K. ; Savariraj A. D. ; Kim H. J. Electrochim. Acta 2013, 103, 231.
24 Yoon Y. P. ; Kim J. H. ; Kang S. H. ; Kim H. ; Choi C. J. ; Kim K. K. ; Ahn K. S. Appl. Phys. Lett. 2014, 105, 083116.
25 Premkumar T. ; Lee K. ; Geckeler K. E. Nanoscale 2011, 3, 1482.
26 Boronat M. ; Corma A. ; Illas F. ; Radilla J. ; Rodenas T. ; Sabater M. J. J. Catal. 2011, 278, 50.
27 Radich J. G. ; Dwyer R. ; Kamat P. V. J. Phys. Chem. Lett. 2011, 2, 2453.
28 Seol M. ; Ramasamy E. ; Lee J. ; Yong K. J. Phys. Chem. C 2011, 115, 22018.
29 Seol M. ; Youn D. H. ; Kim J. K. ; Jang J.W. ; Choi M. ; Lee J. S. ; Yong K. Adv. Energy Mater. 2014, 4, 1300775.
30 Dao V. D. ; Choi Y.W. ; Yong K. J. ; Larina L. L. ; Shevaleevskiy O. ; Choi H. S. J. Power Sources. 2015, 274, 831.
31 Shirakawa H. ; Louis E. L. ; MacDiarmid A. G. J. Chem. Soc. Chem. Commun. 1977, 578
32 Li Y. F. Prog. Chem. 2002, 14, 208.
32 李永舫. 化学进展, 2002, 14, 208.
33 Saranya K. ; Rameez M. ; Subramania A. Eur. Polym. J. 2015, 66, 207.
34 Li J. ; Sun M. X. ; Zhang X. Y. ; Cui X. L. Acta Phys.-Chim. Sin. 2011, 27, 2255.
34 李靖; 孙明轩; 张晓艳; 崔晓莉. 物理化学学报, 2011, 27, 2255.
35 Yeh M. H. ; Lee C.P. ; Chou C. Y. ; Lin L. Y. ; Wei H. Y. ; Chu C.W. ; Vittal R. ; Ho K. C. Electrochim. Acta. 2011, 57, 277.
36 Shu T. ; Ku Z. L. J. Alloy. Compd. 2014, 586, 257.
37 Shu T. ; Li X. ; Ku Z. L. ; Wang S. ; Wu S. ; Jin X. H. ; Hu C. D. Electrochim. Acta. 2014, 137, 700.
38 AbdulAlmohsin S. ; Armstrong J. ; Cui J. B. J. Renew. Sustain. Ener. 2012, 4, 043108.
39 Yue G. T. ; Tan F. R. ; Wu J. H. ; Li F. M. ; Lin J. M. ; Huang M. L. ; Zhang W. F. RSC. Adv. 2015, 5, 42101.
40 Zhu H.W. ; Wei J. Q. ; Wang K. L. ; Wu D. H. Sol. Energy Mater. Sol. Cells. 2009, 93, 1461.
41 Thomas S. ; Deepak T. G. ; Anjusree G. S. ; Arun T. A. ; Nair S. V. ; Nair A. S. J. Mater. Chem. A 2014, 2, 4474.
42 Hodes G. ; Manassen J. ; Cahen D. J. Electrochem. Soc. 1980, 127, 544.
43 Huang Z. ; Liu X. Z. ; Li K. X. ; Li D. M. ; Luo Y. H. ; Li H. ; Song W. B. ; Chen L. Q. ; Meng Q. B. Electrochem. Commun 2007, 9, 596.
44 Chen J. K. ; Li K. X. ; Luo Y. H. ; Guo X. Z. ; Li D. M. ; Deng M. H. ; Huang S. Q. ; Meng Q. B. Carbon 2009, 47, 2704.
45 Li D. M. ; Cheng L. Y. ; Zhang Y. D. ; Zhang Q. X. ; Huang X.M. ; Luo Y. H. ; Meng Q. B. Sol. Energy Mater. Sol. Cells. 2014, 120, 454.
46 Peng M. ; Ma L.L. ; Zhang Y. G. ; Tan M. ; Wang J. B. ; Yu Y. Mater. Res. Bull. 2009, 44, 1834.
47 Dao V. D. ; Kim P. ; Baek S. ; Larina L. L. ; Yong K. ; Ryoo R. ; Ko S. H. ; Choi H. S. Carbon 2016, 96, 139.
48 Thostenson E. T. ; Ren Z. F. ; Chou T. W. Compos. Sci. Technol. 2001, 61, 1899.
49 Dong J. H. ; Jia S. P. ; Chen J. Z. ; Li B. ; Zheng J. F. ; Zhao J.H. ; Wang Z. J. ; Zhu Z. P. J. Mater. Chem 2012, 22, 9745.
50 Song C. ; Du J. P. ; Zhao J. H. ; Feng S. A. ; Du G. X. ; Zhu Z. P. Chem. Mater 2009, 21, 1524.
51 Ganapathy V. ; Kong E. H. ; Park Y. C. ; Jang H. M. ; Rhee S. W. Nanoscale 2014, 6, 3296.
52 Hao F. ; Dong P. ; Zhang J. ; Zhang Y. C. ; Loya P. E. ; Hauge R. H. ; Li J. B. ; Lou J. ; Lin H. Sci. Rep. 2012, 2, 368.
53 Zhang Q. X. ; Zhou S. J. ; Li Q. ; Li H. G. RSC. Adv. 2015, 5, 30617.
54 Paul G. S. ; Kim J. H. ; Kim M. S. ; Do K. ; Ko J. ; Yu J. S. ACS Appl. Mater. Interfaces 2012, 4, 375.
55 Liu L. ; Yuan Z. Y. Prog. Chem. 2014, 26, 756.
55 刘蕾; 袁忠勇. 化学进展, 2014, 26, 756.
56 Fang B. Z. ; Kim M. ; Fan S. Q. ; Kim J. H. ; Wilkinson D. P. ; Ko J. ; Yu J. S. J. Mater. Chem. 2011, 21, 8742.
57 Fan S. Q. ; Fang B. Z. ; Kim J. H. ; Kim J. J. ; Yu J. S. ; Ko J. Appl. Phys. Lett. 2010, 96, 063501.
58 Meng X. ; Cui H. J. ; Dong J. H. ; Zheng J. F. ; Zhu Y. Y. ; Wang Z. J. ; Zhang J. ; Jia S. P. ; Zhao J. H. ; Zhu Z. P. J. Mater. Chem. A 2013, 1, 9469.
59 Deng M. H. ; Zhang Q. X. ; Huang S. Q. ; Li D. M. ; Luo Y.H. ; Shen Q. ; Toyoda T. ; Meng Q. B. Nanoscale Res. Lett. 2010, 5, 986.
60 Dao V. D. ; Choi Y. ; Yong K. ; Larina L. L. ; Choi H. S. Carbon 2015, 84, 383.
61 Zeng J. H. ; Chen D. ; Wang Y. F. ; Jin B. B. J. Mater. Chem. C 2015, 3, 12140.
62 Seol M. ; Choi M. ; Choi Y. ; Yong M. J. Electrochem. Soc. 2014, 161, 809.
63 Li C. ; Huang L. ; Snigdha G. P. ; Yu Y. F. ; Cao L. Y. ACS. Nano. 2012, 6, 8868.
64 Pushpa R. ; Ghosh P. ; Narasumhan S. ; de Gironcoli S. Phys. Rev. B. 2009, 79, 165406.
65 Denis P. A. J. Phys. Chem. C 2013, 117, 3895.
66 Shen S. L. ; Wang Q. B. Chem. Mater. 2013, 25, 1166.
67 Chen H. N. ; Zhu L. Q. ; Liu H. C. ; Li W. P. J. Phys. Chem. C 2013, 117, 3739.
68 Reynolds D. C. ; Leies G. ; Antes. L. L. ; Marburger. R. E. Phys. Rev 1954, 96, 533.
69 Jiang X. C. ; Xie Y. ; Lu J. ; He W. ; Zhu L. Y. ; Qian Y. T. Mater. Chem. 2000, 10, 2193.
70 Nair M. T. S. ; Nair P. K. Semicond. Sci. Technol. 1984, 4, 191.
71 Shi J. F. ; Fan Y. ; Xu X. Q. ; Xu G. ; Chen L. H. Acta Phys.-Chim. Sin. 2012, 28, 857.
71 史继富; 樊晔; 徐雪青; 徐刚; 陈丽华. 物理化学学报, 2012, 28, 857.
72 Pan Z. X. ; Iván M. S. ; Shen Q. ; Zhang H. ; Li Y. ; Zhao K. ; Wang J. ; Zhong X. H. ; Bisquert J. J. Am. Chem. Soc. 2014, 136, 9203.
73 Shen C. ; Sun L. D. ; Koh Z. Y. ; Wang Q. J. Mater. Chem. A 2014, 2, 2807.
74 Zhao K. ; Yu H. J. ; Zhang H. ; Zhong X. H. J. Phys. Chem. C 2014, 118, 5683.
75 Gurpreet S. S. ; Isabella C. ; Riccardo M. ; Marta M. N. ; Giorgio S. ; Alberto V. Nano Energy 2014, 6, 200.
76 Peng Z. ; Liu Y. ; Zhao Y. ; Chen K. ; Cheng Y. ; Chen W. Electrochim. Acta 2014, 135, 276.
77 Deng M. ; Huang S. ; Zhang Q. ; Li D. ; Luo Y. ; Shen Q. ; Toyoda T. ; Meng Q. Chem. Lett. 2010, 39, 1168.
78 Santra P. K. ; Kamat P. V. J. Am. Chem. Soc. 2012, 134, 2508.
79 Radich J. G. ; Dwyer R. ; Kamat P. V. J. Phys. Chem. Lett. 2011, 2, 2453.
80 Jiang Y. ; Zhang X. ; Ge Q. Q. ; Yu B. B. ; Zou Y. G. ; Jiang W. J. ; Song W. G. ; Wan L. J. ; Hu J. S. Nano Lett. 2014, 14, 365.
81 Jiang Y. ; Zhang X. ; Ge Q. Q. ; Yu B. B. ; Zou Y. G. ; Jiang W. J. ; Hu J. S. ; Song W. G. ; Wan L. J. ACS. Appl. Mater. Interfaces 2014, 6, 15448.
82 Jiang Y. ; Yu B. B. ; Liu J. ; Li Z. H. ; Sun J. K. ; Zhong X. H. ; Hu J. S. ; Song W. G. ; Wan L. J. Nano Lett. 2015, 15, 3088.
83 Mane R. S. ; Lokhande C. D. Mater. Chem. Phys. 2000, 65, 1.
84 Kalanur S. S. ; Chae S. Y. ; Joo O. S. Electrochim. Acta 2013, 103, 91.
85 Savariraj A. D. ; Viswanathan K. K. ; Prabakar K. ACS Appl. Mater. Interfaces 2014, 6, 19702.
86 Xu J. ; Xiao J. Y. ; Dong J. ; Luo Y. H. ; Li D. M. ; Meng Q. B. Electrochim. Acta 2014, 127, 180.
87 Gopi C. V. V. M. ; Venkata-Haritha M. ; Kim S. K. ; Rao S. S. ; Punnoose D. ; Kim H. J. RSC. Adv. 2015, 5, 2963.
88 Ke W. J. ; Fang G. J. ; Lei H.W. ; Qin P. L. ; Tao H. ; Zeng W. ; Wang J. ; Zhao X. Z. J. Power Sources 2014, 248, 809.
89 Wang F. F. ; Dong H. ; Pan J. L. ; Li J. J. ; Li Q. ; Xu D. S. J. Phys. Chem. C 2014, 118, 19589.
90 Li L. L. ; Zhu P. N. ; Peng S. J. ; Srinivasan M. ; Yan Q. Y. ; Nair A. S. ; Liu B. ; Samakrishna S. J. Phys. Chem. C 2014, 118, 16526.
91 Sung S. D. ; Lim I. ; Kang P. ; Lee C. M. ; Lee W. I. Chem. Commun. 2013, 49, 6054.
92 Kim C. S. ; Choi S. H. ; Bang J. H. ACS Appl. Mater. Interfaces 2014, 6, 22078.
93 Chen W. L. ; Wang M. ; Qian T. Y. ; Cao H. L. ; Huang S. S. ; He Q. Q. ; Liang N. ; Wang C. ; Zai J. T. Nano Energy 2015, 12, 186.
94 Zhang H. ; Bao H. L. ; Zhong X. H. J. Mater. Chem. A 2015, 3, 6557.
95 Quan L. L. ; Li W. P. ; Zhu L. Q. ; Chang X.W. ; Liu H. C. RSC Adv. 2014, 4, 32214.
96 Kalanur S. S. ; Chae S. Y. ; Joo O. S. Electrochim. Acta 2013, 103, 91.
97 Wang S. M. ; Dong W.W. ; Fang X. D. ; Zhou S. ; Shao J. Z. ; Deng Z. H. ; Tao R. H. ; Zhang Q. L. ; Hu L. H. ; Zhu J. Electrochim. Acta 2015, 154, 47.
98 Wang S. M. ; Dong W.W. ; Fang X. D. ; Deng Z. H. ; Shao J.Z. ; Hu L. H. ; Zhu J. Acta Phys.-Chim. Sin. 2014, 30, 873.
98 王时茂; 董伟伟; 方晓东; 邓赞红; 邵景珍; 胡林华; 朱俊. 物理化学学报, 2014, 30, 873.
99 Xia R. ; Wang S. M. ; Dong W.W. ; Fang X. D. ; Hu L. H. ; Zhu J. Electrochim. Acta 2016, 205, 45.
100 Wang M. K. ; Anghel A. M. ; Marsan B. ; Ha N. L. C. ; Pootrakulchote N. ; Zakeeruddin S. M. ; Gr?tzel M. J. Am. Chem. Soc. 2009, 131, 15976.
101 Mani A. D. ; Deepa M. ; Ghosal P. ; Subrahmanyam C. Electrochim. Acta 2014, 139, 365.
102 Yang Z. ; Chen C. Y. ; Liu C.W. ; Chang H. T. Chem. Commun. 2010, 46, 5485.
103 Yuan H. L. ; Lu J. F. ; Xu X. B. ; Huang D. K. ; Chen W. ; Shen Y. ; Wang M. K. J. Electrochem. Soc. 2013, 160, 624.
104 Peng S. J. ; Zhang T. R. ; Li L. L. ; Shen C. ; Cheng F. Y. ; Srinivasan M. ; Yan Q. Y. ; Ramakrishna S. ; Chen J. Nano Energy 2015, 1, 163.
105 Faber M. S. ; Park K. ; Caban-Acevedo M. ; Santra P. K. ; Jin S. J. Phys. Chem. Lett. 2013, 4, 1843.
106 Luo Q. ; Gu Y. C. ; Li J. B. ; Wang N. ; Lin H. J. Power Sources 2016, 312, 93.
107 Yang Z. S. ; Chen C. Y. ; Liu C.W. ; Li C. L. ; Chang H. T. Adv. Energy Mater. 2011, 1, 259.
108 Hu H.W. ; Ding J. N. ; Qian J. F. ; Li Y. ; Bai L. ; Yuan N. Y. Mater. Lett. 2014, 114, 7.
109 Guo W. X. ; Chen C. ; Ye M. ; Lv M. Q. ; Lin C. J. Nanoscale 2014, 6, 3656.
110 Kung C.W. ; Chen H.W. ; Lin C. Y. ; Huang K. C. ; Vittal R. ; Ho K. C. ACS Nano 2012, 6, 7016.
111 Jean J. ; Chang S. ; Brown P. R. ; Cheng J. J. ; Rekemeyer P.H. ; Bawendi M. G. ; Grade?ak S. ; Bulovi? V. Adv. Mater. 2013, 25, 2790.
112 Zhang Y. G. ; Li Z. ; Ouyang J. Y. ; Tsang S.W. ; Lu J. P. ; Yu K. ; Ding J. F. ; Tao Y. Org. Electron. 2012, 12, 2773.
113 Cheng C. Y. ; Teng C. Y. ; Li T. L. ; Lee Y. L. ; Teng H. S. J. Mater. Chem. A 2013, 1, 1155.
114 Kim B. M. ; Son M. K. ; Kim S. K. ; Hong N. Y. ; Park S. Y. ; Jeong M. S. ; Seo H. ; Prabakar K. ; Kim H. J. Electrochim. Acta 2014, 117, 92.
115 Thulasi-Varma C. V. ; Rao S. S. ; Ikkurthi K. D. ; Kim S. K. ; Kang T. S. Kim H. J., J. Mater. Chem. C 2015, 3, 10195.
116 Yang Y. Y. ; Zhu L. F. ; Sun H. C. ; Huang X. M. ; Luo Y. H. ; Li D. M. ; Meng Q. B. ACS Appl. Mater. Interfaces 2012, 4, 6162.
117 Parand P. ; Samadpour M. ; Esfandiar A. ; Zad A. I. ACS Photonics 2014, 1, 223.
118 Song X. H. ; Wang M. Q. ; Deng J. P. ; Ju Y. Y. ; Xing T. Y. ; Ding J. J. ; Yang Z. ; Shao J. Y. J. Power Sources 2014, 269, 661.
119 Gopi C. V. V. M. ; Venkata-Haritha M. ; Ravi S. ; Thulasi-Varma C. V. ; Kim S. K. ; Kim H. J. J. Mater. Chem. C 2015, 3, 12514.
120 Quan L. L. ; Li W. P. ; Zhu L. Q. ; Geng H. F. ; Chang X.W. ; Liu H. C. J. Power Sources 2014, 272, 546.
121 Geng H. ; Zhu L. ; Li W. ; Liu H. ; Quan L. ; Xi F. ; Su X. J. Power Sources 2015, 281, 204.
122 Geng H. ; Zhu L. ; Li W. ; Liu H. ; Su X. ; Xi F. ; Chang X. Electrochim. Acta 2015, 182, 1093.
123 Kim H. J. ; Kim D. J. ; Rao S. S. ; Savariraj A. D. ; Soo-Kyoung K. ; Son M. K. ; Gopi C. V. V. M. ; Prabakar K. Electrochim. Acta 2014, 127, 427.
124 Gopi C. V. V. M. ; Rao S. S. ; Kim S. K. ; Punnoose D. ; Kim H. J. J. Power Sources 2015, 275, 547.
125 Faber M. S. ; Lukowski M. A. ; Ding Q. ; Kaiser N. S. ; Jin S. J. Phys. Chem. C 2014, 118, 21347.
126 Scragg J. J. ; Dale P. J. ; Peter L. M. ; Zoppi G. ; Forbes I. Phys. Status Solidi (b) 2008, 245, 1772.
127 Guo Q. J. ; Hillhouse H.W. ; Agrawal R. J. Am. Chem. Soc. 2009, 113, 11672.
128 Riha S. C. ; Parkinson B. A. ; Prieto A. L. J. Am. Chem. Soc. 2009, 131, 12054.
129 Guo Q. ; Ford G. M. ; Yang W. C. ; Walker B. C. ; Stach E. A. ; Hillhouse H.W. ; Agrawal R. J. Am. Chem. Soc. 2010, 132, 17384.
130 Dai P. C. ; Zhang G. ; Chen Y. C. ; Jiang H. C. ; Feng Z. Y. ; Lin Z. J. ; Zhan J. H. Chem. Commun. 2012, 48, 3006.
131 Xin X. ; He M. ; Han W. ; Jung J. ; Lin Z. Angew. Chem. Int. Ed. 2011, 50, 11739.
132 Wang J. ; Xin X. K. ; Lin Z. Q. Nanoscale 2011, 3, 3040.
133 Xu J. X. ; Yang X. ; Yang Q. D. ; Wong T. L. ; Lee C. S. J. Phys. Chem. C 2012, 116, 19718.
134 Zeng X.W. ; Zhang W. J. ; Xie Y. ; Xiong D. H. ; Chen W. ; Xu X. B. ; Wang M. K. ; Cheng Y. B. J. Power Sources 2013, 226, 359.
135 Xiao J.W. ; Zeng X.W. ; Chen W. ; Xiao F. ; Wang S. Chem. Commun. 2013, 49, 11734.
136 Saloniemi H. ; Kanniainen T. ; Ritala M. ; Leskel? M. ; Lappalainen R. Thin Solid Films 1998, 8, 78.
137 Cao Y. B. ; Xiao Y. J. ; Jung J. Y. ; Um H. D. ; Jee S.W. ; Choi H. M. ; Bang J. H. ; Lee J. H. ACS. Appl. Mater. Interfaces 2013, 5, 479.
138 Zeng X.W. ; Xiong D. H. ; Zhang W. J. ; Ming L. Q. ; Xu Z. ; Huang Z. F. ; Wang M. K. ; Chen W. ; Cheng Y. B. Nanoscale 2013, 5, 6992.
139 Liu F. ; Zhu J. ; Li Y. ; Wei J. F. ; Lv M. ; Xu Y. F. ; Zhou L. ; Hu L. H. ; Dai S. Y. J. Power Sources 2015, 292, 7.
140 Choi H. M. ; Ji I. A. ; Bang J. H. ACS Appl. Mater. Interfaces 2014, 6, 2335.
141 Chen X. Q. ; Li Z. ; Bai Y. ; Sun Q. ; Wang L. Z. ; Dou S. X. Chem. Eur. J. 2015, 21, 1055.
142 Bai Y. ; Han C. ; Chen X. Q. ; Yu H. ; Zong X. ; Li Z. ; Wang L. Z. Nano Energy 2015, 13, 609.
143 Liu F. ; Zhu J. ; Hu L. H. ; Zhang B. ; Yao J. X. ; Nazeeruddin M. K. ; Gr?tzel M. ; Dai S. Y. J. Mater. Chem. A 2015, 3, 6315.
144 Eskandari M. ; Ahmadi V. Mater. Lett 2015, 142, 308.
145 Ma C. Q. ; Tang Q.W. ; Zhao Z. Y. ; Hou M. J. ; Chen Y. R. ; He B. L. ; Yu L. M. J. Power Sources 2015, 278, 183.
146 Guo W. ; Shen Y. H. ; Wu M. X. ; Wang L. ; Wang L. L. ; Ma T. L. Chem. Eur. J. 2012, 18, 7862.
147 Yeh M. H. ; Lin L. Y. ; Lee C. P. ; Chou C. Y. ; Tsai K.W. ; Lin J. T. ; Ho K. C. J. Power Sources 2013, 237, 141.
148 Youn D. H. ; Seol M. ; Kim J. Y. ; Jang J.W. ; Choi Y. ; Yong K. ; Lee J. S. ChemSuSChem 2013, 6, 261.
149 Seol M. ; Youn D. H. ; Kim J. Y. ; Jang J.W. ; Choi M. ; Lee J.S. ; Yong K. Adv. Energy Mater. 2014, 4, 1300775.
150 Kang J. S. ; Park M. A. ; Kim J. Y. ; Park S. H. ; Chung D. Y. ; Yu S. H. ; Kim J. ; Park J. ; Choi J.W. ; Lee K. J. ; Jeong J. ; Ko M. J. ; Ahn K. S. ; Sung Y. E. Sci. Rep. 2015, 5, 10450.
[1] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[2] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 130-148.
[3] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 728-736.
[4] XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2427-2446.
[5] WEI Hui-Yun, WANG Guo-Shuai, WU Hui-Jue, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo. Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 201-213.
[6] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1715-1726.
[7] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 676-684.
[8] WANG Yu-Qiao, WANG Pan-Pan, LU Jing, BAI Yi-Chao, GU Yun-Liang, SUN Yue-Ming. Dye-Sensitized Solar Cells Based on MWCNT/TiO2 Counter Electrode and Thiolate/Disulfide Non-Iodine Redox Couple[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 448-456.
[9] SU Jia, LU Shan, WANG Sha-Sha, ZHANG Xue-Hua, FU Yu-Bin, HE Tao. Influence of pH Values on the Structure and Performance of a Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1487-1494.
[10] WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong, DENG Zan-Hong, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2014, 30(5): 873-880.
[11] ZHU Lei, QIANG Ying-Huai, ZHAO Yu-Long, GU Xiu-Quan, SONG Duan-Ming, SONG Chang-Bin. Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2013, 29(11): 2339-2344.
[12] WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao. Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 516-524.
[13] ZHU Jun, YU Xue-Chao, WANG Shi-Mao, DONG Wei-Wei, HU Lin-Hua, FANG Xiao-Dong, DAI Song-Yuan. Application of Cu2S Counter Electrode in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 533-538.
[14] WANG Yu, JIANG Jun-Cong, ZHU Yue-Xiang, XIE You-Chang. Applications of Monolayer-Dispersed Organic Compounds in the Preparation of Related Materials[J]. Acta Physico-Chimica Sinca, 2012, 28(10): 2327-2335.
[15] CHU Ling-Ling, GAO Yu-Rong, WU Ming-Xing, WANG Lin-Lin, MA Ting-Li. Fabrication and Application of a Carbon Counter Electrode with Excellent Adhesion Properties for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2012, 28(07): 1739-1744.