Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1001-1009    DOI: 10.3866/PKU.WHXB201701131
ARTICLE     
Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm
Zhi-Bo FAN1,3,Xiao-Qing GONG1,3,Dan-Feng LU1,Ran GAO1,Zhi-Mei QI1,2,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(1316KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A colorful surface plasmon resonance imaging sensor for the in-situ detection of benzopyrene (BaP) in water is presented in this paper. The sensor can provide intuitive image information and can also quantitatively analyze the concentration and adsorption/desorption processes of the analyte by combining the hue algorithm. Both the resonance wavelengths and resonance images for a bare gold film chip were obtained at different incident angles using a home-made surface plasmon resonance (SPR) sensor that possesses wavelength-interrogating and imaging capabilities. The relationship between the resonance wavelength and the average hue of the color image was established based on the hue algorithm. From this relationship, the initial resonance wavelength at which the SPR sensor can provide optimal hue sensitivity was derived, which was ~650 nm. Polytetrafluoroethylene (PTFE)-coated SPR sensor chips were prepared for the in-situ rapid detection of BaP in water based on the reversible enrichment of BaP molecules in the PTFE film. The results showed that: (1) the average hue of the SPR color image decreases linearly as BaP concentration increases from 20 to 100 nmol·L-1; (2) both the response time and recovery times of the SPR sensor for 100 nmol·L-1 BaP are 7 and 5 s, respectively; (3) since the thickness of the PTFE filmis greater than the penetration depth of the surface plasmon field, the BaP detection is not affected by the refractive index of the solution sample; and (4) in the case of a non-uniform PTFE film, the sensor allows to determine the hue sensitivities for equal-thickness microscale areas of the sensing film. The experimental results show that this type of colorful SPR imaging sensor has widespread applicability for chemical and biological detection.



Key wordsColor surface plasmon resonance imaging      Hue      Benzo[a]pyrene      PTFE sensing film      In-situ detection     
Received: 01 December 2016      Published: 13 January 2017
MSC2000:  O647  
  TP212.14  
Fund:  the National Key Basic Research Program of China (973)(2015CB352100);National Natural Science Foundation of China(61377064);National Natural Science Foundation of China(61675203);and Research Equipment Development Project of Chinese Academy of Sciences(YZ201508)
Corresponding Authors: Zhi-Mei QI     E-mail: zhimei-qi@mail.ie.ac.cn
Cite this article:

Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm. Acta Physico-Chimica Sinca, 2017, 33(5): 1001-1009.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201701131     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1001

Fig 1 Schematic diagram of experimental setup CCD: charge-coupled device; SPR: surface plasmon resonance
Fig 2 (a) Resonance spectra measured at different incident angles; (b) SPR images corresponding to different resonance spectra; (c) two-dimensional (2D) hue profiles corresponding to different SPR images; (d) average hue versus resonance wavelength
Fig 3 (a) SPR images and the corresponding 2D hue profiles measured in air and water; (b) resonance spectra measured in air and water claddings
Fig 4 (a) SPR images recorded with aqueous BaP solutions of different concentrations and the corresponding 2D hue profiles; (b) average hue versus BaP concentration
Fig 5 (a) SPR images recorded at different adsorption time and the corresponding 2D hue profiles; (b) average hue versus adsorption time
Fig 6 (a) SPR images recorded at different desorption time and the corresponding 2D hue profiles; (b) average hue versus desorption time
Fig 7 (a) and (b) SPR images and the corresponding 2D hue profiles measured before and after adsorption insets: magnified view of the selected regions
Fig 8 (a) Resonance spectra measured before and after adsorption; (b) comparison of the hue changes for two selected regions (ΔλR for the area of spot was also shown)
1 Martinez E. ; Gros M. ; Lacorte S. ; Barceló D. J. Chromatogr.A 2004, 1047 (2), 181.
2 Anastasio A. ; Mercogliano R. ; Vollano L. ; Pepe T. ; Cortesi M. L. J. Agric. Food Chem. 2004, 52 (14), 4452.
3 Reeves W. R. ; Barhoumi R. ; Burghardt R. C. ; Lemke S. L. ; Mayura K. Environ. Sci. Technol. 2001, 35 (8), 1630.
4 Du C. ; Hu Y. ; Li Y. ; Li X. H. ; Fan L. Z. Talanta 2015, 138, 46.
5 Zhang Y. H. ; Su Q. ; Xu J. H. ; Zhang Y. ; Chen S. T. Int. J.Electrochem. Sci. 2014, 9 (7), 3736.
6 Wu D. Sci. Technol. Food Ind. 2008, 5, 309.
6 吴丹. 食品工业科技, 2008, 5, 309.
7 Perry M. B. ; Wehry E. L. ; Mamantov G. Anal. Chem. 1983, 55 (12), 1893.
8 Chiara C. ; Giorgia P. ; Lanfranco S. C. ; Sabrina M. J. Sep. Sci. 2015, 38 (10), 1749.
9 Hilpert L. R. ; Byrd G. D. ; Vogt C. R. Anal. Chem. 1984, 56 (11), 1842.
10 Klimisch H. J. Anal. Chem. 2002, 45 (11), 210.
11 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. ; Yang H. Sens.Actuators B 2015, 212, 200.
12 Yeatman E. ; Ash E. A. Electron. Lett 1987, 23 (20), 1091.
13 Kodadek T. Chem. Biol. 2001, 8 (2), 105.
14 Yuk J. S. ; Ha K. S. Exp. Mol. Med. 2005, 37 (1), 1.
15 Mariani S. ; Minunni M. Anal. Bioanal. Chem. 2014, 406 (9-10), 2303.
16 Cetin A. E. ; Coskun A. F. ; Galarreta B. C. ; Huang M. ; Herman D. ; Ozcan A. ; Altug H. Light-Sci. Appl 2014, 3 (1), e122.
17 Piliarik M. ; Homola J. Sens. Actuators B 2008, 134 (2), 353.
18 Yanase Y. ; Sakamoto K. ; Kobayashi K. Opt. Mater. Express 2016, 6 (4), 1339.
19 Knobloch H. ; Woigk S. ; Helms A. ; Brehmer L. Appl. Phys.Lett. 1996, 69 (16), 2336.
20 Beusink J. B. ; Lokate A. M. ; Besselink G. A. ; Pruijn G. J. ; Schasfoort R. B. Biosens. Bioelectron. 2008, 23 (6), 839.
21 Andersson O. ; Ulrich C. ; Bj?refors F. ; Liedberg B. Sens.Actuators B 2008, 134 (2), 545.
22 Zhang P. ; Liu L. ; He Y. ; Shen Z. Y. ; Guo J. Appl. Opt. 2014, 53 (26), 6037.
23 Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog.Chem. 2010, 8, 1648.
23 申刚义,陈义,张轶鸣,崔箭.化学进展, 2010, 8, 1648.
24 Shen G. Y. ; Han Z. Q. ; Liu W. ; Chen Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651.
24 申刚义; 韩志强; 刘巍;陈义. 高等学校化学学报, 2007, 28 (9), 1651.
25 Smith A. R. AcmSiggr. Comp. Graph. 1978, 12 (3), 12.
26 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta. Phys.-Chim. Sin 2014, 30 (9), 1771.
26 张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
[1] WANG Xinyi, XIE Lei, DING Yuanqi, YAO Xinyi, ZHANG Chi, KONG Huihui, WANG Likun, XU Wei. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[2] LEE Jordan, LI Yong, TANG Jianing, CUI Xiaoli. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[3] SHEN Xiangyan, HE Jianjiang, WANG Ning, HUANG Changshui. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[4] Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 456-475.
[5] ZHAO Yeliang, WANG Bing. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[6] DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[7] SUN Chengzhen, BAI Bofeng. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[8] HUANG Zhijuan, YU Zhinong, LI Yan, WANG Jizheng. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[9] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2523-2531.
[10] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2173-2183.
[11] Gui-Xia LI,Yong-Chao JIANG,Peng LI,Wei PAN,Yong-Ping LI,Yun-Jie LIU. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2219-2226.
[12] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1934-1943.
[13] Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2064-2071.
[14] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[15] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.