Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 1001-1009    DOI: 10.3866/PKU.WHXB201701131
Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm
FAN Zhi-Bo1,3, GONG Xiao-Qing1,3, LU Dan-Feng1, GAO Ran1, QI Zhi-Mei1,2
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China;
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(1316KB) Export: BibTeX | EndNote (RIS)      


A colorful surface plasmon resonance imaging sensor for the in-situ detection of benzopyrene (BaP) in water is presented in this paper. The sensor can provide intuitive image information and can also quantitatively analyze the concentration and adsorption/desorption processes of the analyte by combining the hue algorithm. Both the resonance wavelengths and resonance images for a bare gold film chip were obtained at different incident angles using a home-made surface plasmon resonance (SPR) sensor that possesses wavelengthinterrogating and imaging capabilities. The relationship between the resonance wavelength and the average hue of the color image was established based on the hue algorithm. From this relationship, the initial resonance wavelength at which the SPR sensor can provide optimal hue sensitivity was derived, which was ~650 nm. Polytetrafluoroethylene (PTFE)-coated SPR sensor chips were prepared for the in-situ rapid detection of BaP in water based on the reversible enrichment of BaP molecules in the PTFE film. The results showed that: (1) the average hue of the SPR color image decreases linearly as BaP concentration increases from 20 to 100 nmol·L-1; (2) both the response time and recovery times of the SPR sensor for 100 nmol·L-1 BaP are 7 and 5 s, respectively; (3) since the thickness of the PTFE filmis greater than the penetration depth of the surface plasmon field, the BaP detection is not affected by the refractive index of the solution sample; and (4) in the case of a non-uniform PTFE film, the sensor allows to determine the hue sensitivities for equal-thickness microscale areas of the sensing film. The experimental results show that this type of colorful SPR imaging sensor has widespread applicability for chemical and biological detection.

Key wordsColor surface plasmon resonance imaging      Hue      Benzo[a]pyrene      PTFE sensing film      In-situ detection     
Received: 01 December 2016      Published: 13 January 2017
MSC2000:  O647  

The project was supported by the National Key Basic Research Program of China (973) (2015CB352100), National Natural Science Foundation of China (61377064, 61675203) and Research Equipment Development Project of Chinese Academy of Sciences (YZ201508).

Corresponding Authors: QI Zhi-Mei     E-mail:
Cite this article:

FAN Zhi-Bo, GONG Xiao-Qing, LU Dan-Feng, GAO Ran, QI Zhi-Mei. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm. Acta Phys. -Chim. Sin., 2017, 33(5): 1001-1009.

URL:     OR

(1) Martinez, E.; Gros, M.; Lacorte, S.; Barceló, D. J. Chromatogr.A 2004, 1047 (2), 181. doi: 10.1016/j.chroma.2004.07.003
(2) Anastasio, A.; Mercogliano, R.; Vollano, L.; Pepe, T.; Cortesi, M. L. J. Agric. Food Chem. 2004, 52 (14), 4452. doi: 10.1021/jf049566n
(3) Reeves, W. R.; Barhoumi, R.; Burghardt, R. C.; Lemke, S. L.; Mayura, K. Environ. Sci. Technol. 2001, 35 (8), 1630.doi: 10.1021/es001689a
(4) Du, C.; Hu, Y.; Li, Y.; Li, X. H.; Fan, L. Z. Talanta 2015, 138, 46. doi: 10.1016/j.talanta.2015.02.005
(5) Zhang, Y. H.; Su, Q.; Xu, J. H.; Zhang, Y.; Chen, S. T. Int. J.Electrochem. Sci. 2014, 9 (7), 3736.
(6) Wu, D. Sci. Technol. Food Ind. 2008, 5, 309. [吴丹. 食品工业科技, 2008, 5, 309.] doi: 10.13386/j.issn1002-0306.2008.05.080
(7) Perry, M. B.; Wehry, E. L.; Mamantov, G. Anal. Chem. 1983, 55 (12), 1893. doi: 10.1021/ac00262a013
(8) Chiara, C.; Giorgia, P.; Lanfranco, S. C.; Sabrina, M. J. Sep. Sci. 2015, 38 (10), 1749. doi: 10.1002/jssc.201401246
(9) Hilpert, L. R.; Byrd, G. D.; Vogt, C. R. Anal. Chem. 1984, 56 (11), 1842. doi: 10.1021/ac00275a019
(10) Klimisch, H. J. Anal. Chem. 2002, 45 (11), 210. doi: 10.1021/ac60333a053
(11) Fu, S.; Guo, X.; Wang, H.; Yang, T.; Wen, Y.; Yang, H. Sens.Actuators B 2015, 212, 200. doi: 10.1016/j.snb.2015.01.134
(12) Yeatman, E.; Ash, E. A. Electron. Lett. 1987, 23 (20), 1091.doi: 10.1049/el:19870762
(13) Kodadek, T. Chem. Biol. 2001, 8 (2), 105. doi: 10.1016/S1074-5521(00)90067-X
(14) Yuk, J. S.; Ha, K. S. Exp. Mol. Med. 2005, 37 (1), 1.doi: 10.1038/emm.2005.1
(15) Mariani, S.; Minunni, M. Anal. Bioanal. Chem. 2014, 406 (9-10), 2303. doi: 10.1007/s00216-014-7647-5
(16) Cetin, A. E.; Coskun, A. F.; Galarreta, B. C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Light-Sci. Appl. 2014, 3 (1), e122. doi: 10.1038/lsa.2014.3
(17) Piliarik, M.; Homola, J. Sens. Actuators B 2008, 134 (2), 353.doi: 10.1016/j.snb.2008.06.011
(18) Yanase, Y.; Sakamoto, K.; Kobayashi, K. Opt. Mater. Express 2016, 6 (4), 1339. doi: 10.1364/OME.6.001339
(19) Knobloch, H.; Woigk, S.; Helms, A.; Brehmer, L. Appl. Phys.Lett. 1996, 69 (16), 2336. doi: 10.1063/1.117516
(20) Beusink, J. B.; Lokate, A. M.; Besselink, G. A.; Pruijn, G. J.; Schasfoort, R. B. Biosens. Bioelectron. 2008, 23 (6), 839.doi: 10.1016/j.bios.2007.08.025
(21) Andersson, O.; Ulrich, C.; Björefors, F.; Liedberg, B. Sens.Actuators B 2008, 134 (2), 545. doi: 10.1016/j.snb.2008.05.042
(22) Zhang, P.; Liu, L.; He, Y.; Shen, Z. Y.; Guo, J. Appl. Opt. 2014, 53 (26), 6037. doi: 10.1364/AO.53.006037
(23) Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog.Chem. 2010, 8, 1648. [申刚义, 陈义, 张轶鸣, 崔箭. 化学进展, 2010, 8, 1648.]
(24) Shen, G. Y.; Han, Z. Q.; Liu, W.; Chen, Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651. [申刚义, 韩志强, 刘巍, 陈义. 高等学校化学学报, 2007, 28 (9), 1651.] doi: 10.3321/j.issn:0251-0790.2007.09.032
(25) Smith, A. R. AcmSiggr. Comp. Graph. 1978, 12 (3), 12.doi: 10.1145/965139.807361
(26) Zhang, Z.; Liu, J.; Lu, D. F.; Qi, Z. M. Acta. Phys. -Chim. Sin.2014, 30 (9), 1771. [张喆, 刘杰, 逯丹凤, 祁志美. 物理化学学报, 2014, 30 (9), 1771.] doi: 10.3866/PKU.WHXB201407071

[1] LI Wentao, YONG Jiale, YANG Qing, CHEN Feng, FANG Yao, HOU Xun. Oil-Water Separation Based on the Materials with Special Wettability[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[3] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2219-2226.
[4] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.
[5] LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[6] WU Qian, WENG Wei-Zheng, LIU Chun-Li, HUANG Chuan-Jing, XIA Wen-Sheng, WAN Hui-Lin. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2064-2071.
[7] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[8] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[9] WANG Xiao-Qiang, LIU Jiang, XIE Yong-Min, CAI Wei-Zi, ZHANG Ya-Peng, ZHOU Qian, YU Fang-Yong, LIU Mei-Lin. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.
[10] ZHANG Wei, SU Yu, LIU Fang-Hui, YANG Hui, WANG Jin-Ben. Study of Interactions between 3,4-Dihydroxyphenylalanine and Surfaces with Nano-, Micro- and Hierarchical Structures Using Colloidal Probe Technology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1644-1654.
[11] WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.
[12] XIANG Hui-Jing, LIU Jin-Gang, ZHAO Yanli. Recent Research Advancements in NO-Releasing Nanomaterials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 903-917.
[13] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[14] LIU Dan-Yang, WANG Wan-Luo, XU Shou-Hong, LIU Hong-Lai. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 836-844.
[15] ZHANG Ting, SHEN Jie. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 795-802.