Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (4): 661-669    DOI: 10.3866/PKU.WHXB201701171
FEATURE ARTICLE     
Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications
Hao HUANG,Ran LONG*(),Yu-Jie XIONG*()
Download: HTML     PDF(3040KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The surface plasmons of metal nanocrystals provide a new opportunity for converting solar energy to chemical energy. In this article, we outline the mechanisms of surface plasmons in catalytic organic hydrogenation based on our recent studies, where efficient conversion of solar to chemical energy was achieved. This paved the way to replacing heat-based catalysis in conventional chemical manufacturing with solar energy, providing guidance for designing plasmonic catalytic materials.



Key wordsSurface plasmon      Nanomaterial      Catalysis      Photothermal effect      Hot electron     
Received: 05 November 2016      Published: 17 January 2017
MSC2000:  O644.15  
Fund:  the National Natural Science Foundation of China(21471141);the National Natural Science Foundation of China(21573212)
Corresponding Authors: Ran LONG,Yu-Jie XIONG     E-mail: longran@ustc.edu.cn;yjxiong@ustc.edu.cn
Cite this article:

Hao HUANG,Ran LONG,Yu-Jie XIONG. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications. Acta Physico-Chimica Sinca, 2017, 33(4): 661-669.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201701171     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/661

Fig 1 Main physical mechanisms of surface plasmon
Fig 2 (a) Transmission electron microscopy (TEM) and scanning TEM (STEM) images of concave Pd nanostructures; (b) normalized UV-Vis extinction spectra of concave Pd nanostructures; plots of the relative field amplitude across the (c) front and (d) middle planes of a concave Pd nanostructure by discrete dipole approximation (DDA) calculations22
Fig 3 (a) Schematic for light-driven catalytic hydrogenation using Pd-Ag alloy nanocages; (b) TEM image of Pd-Ag alloy nanocages with 44.08% (w) Pd; (c) UV-Vis extinction spectra of Pd-Ag alloy nanocages with different Pd concentrations; (d) yield of ethyl benzene from the styrene hydrogenation reaction catalyzed by Pd-Ag nanocages at room temperature under 50 mW·cm-2 light illumination (λ > 400 nm)23
Fig 4 (a) TEM image of Pd concave nanostructures supported on TiO2; (b) schematic illustrating the hot-electron transfer from Pd to TiO2; (c) catalytic hydrogenation of styrene catalyzed by bare Pd concave nanostructures and Pd-TiO2 hybrid structures22
Adsorption energy/eV {100} {730} Pd13-a Pd13-b
Ead -2.090 -2.095 -2.929 -2.864
Ead(+e) -2.735 -2.739 -2.957 -2.877
Table 1 Computed Had adsorption energies for Pd{100}, Pd{730}, and Pd13 clusters by first-principles simulations22
Fig 5 Schematics illustrating the strategies for designing plasmon-mediated catalysts10
Fig 6 (a) TEM of Au-Pd core-shell nanostructures with two atomic Pd layers; (b) aberration-corrected high-angle annular dark-field (HAADF)-STEM; (c) atomic-resolution images; (d) STEM and energy dispersive spectroscopy (EDS) mapping profiles of Au-Pd core-shell nanostructures with two atomic Pd layers26
Fig 7 (a) Ultrafast transient absorption spectroscopy characterization for L mode; (b) photothermal effect on styrene hydrogenation under irradiation of λ > 700 nm in comparison with time constants for electron-phonon scattering; (c) hot-electron effect on styrene hydrogenation under irradiation of λ > 700 nm in comparison with time constants responsible for charge recombination26 τ1: electron-phonon scattering; τ2: charge recombination; (b-c) L: layer
1 Giannini V. ; Fernandez-Dominguez A. I. ; Heck S. C. ; Maier S. A. Chem. Rev. 2011, 111, 3888.
2 Rycenga M. ; Cobley C. M. ; Zeng J. ; Li W. ; Moran C. H. ; Zhang Q. ; Qin D. ; Xia Y. Chem. Rev. 2011, 111, 3669.
3 Zhai P. ; Xu C. ; Gao R. ; Liu X. ; Li M. Z. ; Li W. Z. ; Fu X. P. ; Jia C. J. ; Xie J. L. ; Zhao M. ; Wang X. P. ; Li Y.W. ; Zhang Q.W. ; Wen X. D. ; Ma D. Angew. Chem. Int. Ed. Engl. 2016, 55, 9902.
4 Yang J. H. ; Yang D. ; Tang P. ; Ma D. Acta Phys.-Chim. Sin. 2016, 32, 75.
4 杨敬贺; 杨朵; 唐沛; 马丁. 物理化学学报, 2016, 32, 75.
5 Zhao Y. ; Zhao B. ; Liu J. ; Chen G. ; Gao R. ; Yao S. ; Li M. ; Zhang Q. ; Gu L. ; Xie J. ; Wen X. ; Wu L. Z. ; Tung C. H. ; Ma D. ; Zhang T. Angew. Chem. Int. Ed. Engl. 2016, 55, 4215.
6 Chen H. J. ; Shao L. ; Li Q. ; Wang J. F. Chem. Soc. Rev. 2013, 42, 2679.
7 Xiao M. D. ; Jiang R. B. ; Wang F. ; Fang C. H. ; Wang J. F. ; Yu J. C. J. Mater. Chem. A. 2013, 1, 5790.
8 Bai S. ; Wang C. M. ; Jiang W. Y. ; Du N. N. ; Li J. ; Du J. T. ; Long R. ; Li Z. Q. ; Xiong Y. J. Nano Res. 2015, 8, 2789.
9 Long R. ; Wu D. ; Li Y. P. ; Bai Y. ; Wang C. M. ; Song L. ; Xiong Y. J. Nano Res. 2015, 8, 2115.
10 Long R. ; Li Y. ; Song L. ; Xiong Y. J. Small 2015, 11, 3873.
11 Yin A. X. ; Min X. Q. ; Zhu W. ; Liu W. C. ; Zhang Y.W. ; Yan C. H. Chemistry 2012, 18, 777.
12 Wang F. ; Li C. ; Chen H. ; Jiang R. ; Sun L. D. ; Li Q. ; Wang J. ; Yu J. C. ; Yan C. H. J. Am. Chem. Soc. 2013, 135, 5588.
13 Wang F. ; Li C. ; Sun L. D. ; Wu H. ; Ming T. ; Wang J. ; Yu J.C. ; Yan C. H. J. Am.Chem. Soc. 2011, 133, 1106.
14 Baffou G. ; Quidant R. Chem. Soc. Rev. 2014, 43, 3898.
15 Comin A. ; Manna L. Chem. Soc. Rev. 2014, 43, 3957.
16 Xiong Y. ; McLellan J. M. ; Chen J. ; Yin Y. ; Li Z. Y. ; Xia Y. J. Am. Chem. Soc. 2005, 127, 17118.
17 Diallo A. K. ; Ornelas C. ; Salmon L. ; Ruiz Aranzaes J. ; Astruc D. Angew. Chem. Int. Ed. Engl. 2007, 46, 8644.
18 Stahl S. S. Angew. Chem. Int. Ed. Engl. 2004, 43, 3400.
19 Beletskaya I. P. ; Cheprakov A. V. Chem. Rev. 2000, 100, 3009.
20 Collins G. ; Schmidt M. ; Dwyer C. O. ; Holmes J. D. ; McGlacken G. P. Angew. Chem. Int. Ed. Engl. 2014, 53, 4142.
21 Crespo-Quesada M. ; Yarulin A. ; Jin M. ; Xia Y. ; Kiwi-Minsker L. J. Am. Chem. Soc. 2011, 133, 12787.
22 Long R. ; Rao Z. L. ; Mao K. K. ; Li Y. ; Zhang C. ; Liu Q. L. ; Wang C. M. ; Li Z. Y. ; Wu X. J. ; Xiong Y. J. Angew. Chem. Int. Ed. Engl. 2015, 54, 2425.
23 Zhao X. Y. ; Long R. ; Liu D. ; Luo B. B. ; Xiong Y. J. J. Mater. Chem. A. 2015, 3, 9390.
24 Zheng Z. ; Tachikawa T. ; Majima T. J. Am. Chem. Soc. 2014, 136, 6870.
25 Ringler M. ; Schwemer A. ; Wunderlich M. ; Nichtl A. ; Kurzinger K. ; Klar T. A. ; Feldmann J. Phys. Rev. Lett. 2008, 100, 203002.
26 Huang H. ; Zhang L. ; Lv Z. H. ; Long R. ; Zhang C. ; Ling Y. ; Wei K. C. ; Wang C. M. ; Chen L. ; Li Z. Y. ; Zhang Q. ; Luo Y. ; Xiong Y. J. J. Am. Chem. Soc. 2016, 138, 6822.
[1] Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 348-360.
[2] Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 177-184.
[3] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[4] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[5] Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1223-1229.
[6] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[7] Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1001-1009.
[8] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[9] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[10] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 691-708.
[11] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[12] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[13] Mingshu CHEN. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2424-2437.
[14] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2301-2309.
[15] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.