Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1017-1026    DOI: 10.3866/PKU.WHXB201702082
ARTICLE     
Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation
Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE*(),Meng-Fei LUO*()
Download: HTML     PDF(1571KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of SiO2-supported fourth period transition metal catalysts (M/SiO2) was prepared by a wetness impregnation method for the dehydrochlorination of 1, 1, 2-trichloroethane (TCE) in the gas phase. Among these M/SiO2 catalysts, Zn/SiO2 had the best catalytic activity with the highest TCE conversion (~98%) and excellent selectivity for cis-1, 2-dichloroethylene (82%). By increasing the zinc loading, the conversion of TCE using the Zn/SiO2 catalyst was gradually improved, in agreement with the total acidity in the Zn/SiO2 catalyst. Associating the specific activity and specific acidity of the Zn/SiO2 catalyst with different Zn loadings, it was found that higher specific acidity contributed to higher specific activity, indicating that the acid center of Zn/SiO2 was the catalytic active site for the dehydrochlorination of TCE. In the process of dehydrochlorination, the Zn/SiO2 catalyst could be deactivated, mainly due to coke deposition on the catalyst surface. Catalysts with low Zn loading had stronger acid sites, which resulted in more coke formation on the catalyst. The results showed that strong acid sites on the catalyst surface were responsible for the deposition of coke and deactivation of the catalyst.



Key wordsTransition metal catalysts      1, 1, 2-Trichloroethane      Cis-1, 2-dichloroethylene      Dehydrochlorination      Acidity      Deactivation     
Received: 25 November 2016      Published: 08 February 2017
MSC2000:  O643  
Fund:  the Natural Science Foundation of Zhejiang Province, China(LY16B070001)
Corresponding Authors: Guan-Qun XIE,Meng-Fei LUO     E-mail: gqxie@zjnu.edu.cn;mengfeiluo@zjnu.edu.cn
Cite this article:

Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation. Acta Physico-Chimica Sinca, 2017, 33(5): 1017-1026.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702082     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1017

Fig 1 Dehydrochlorination of 1, 1, 2-trichloroethane (TCE) catalyzed by SiO2-supported transition metals (a) TCE conversion; (b) selectivity to cis-1, 2-dichloroethylene (cis-DCE); (c) selectivity to trans-1, 2-dichloroethylene (trans-DCE); reaction condition: amount of catalyst, 0.30 g; pretreatment condition: 500 ℃ in N2 for 1.5 h; reaction temperature: 350 ℃; space velocity: 1000 h-1
Fig 2 Effect of Zn precursor (Zn (NO3)2 orZnCl2) on the dehydrochlorination of 1, 1, 2-trichloroethane (TCE) over 10% Zn/SiO2 (a) Zn (NO3)2; (b) ZnCl2. reaction condition: amount of catalyst, 0.30 g; pretreatment condition, 500 ℃ in N2 for 1.5 h; reaction temperature, 350 ℃; space velocity: 1000 h-1
Pretreatment temperature/℃bReaction temperature/℃bSpace velocity/h-1b
400500600300350400100020003000
Conversion/%97.498.697.660.298.198.898.689.973.8
Sel (cis-DCE)/%80.681.981.682.381.975.581.982.682.4
Sel (trans-DCE)/%14.814.915.113.314.917.414.914.914.9
Sel (others)/%4.63.33.34.43.36.73.32.62.4
Table 1 Effect of pretreatment temperature, reaction temperature and space velocity on the dehydrochlorination of TCE over 10% Zn/SiO2 a
Fig 3 Effect of Zn loadings on the dehydrochlorination of TCE over Zn/SiO2 catalysts (a) TCE conversion; (b) selectivity to cis-DCE. reaction condition: amount of catalyst, 0.30 g; pretreatment condition: 500℃ in N2 for 1.5 h; reaction temperature, 350 ℃; space velocity: 1000 h-1
Fig 4 Dehydrochlorination of TCE over Zn/SiO2 catalysts after decreasing the amount of Zn catalysts (a) TCE conversion; (b) specific activity; (c) selectivity to cis-DCE. reaction condition: amount of catalyst, 0.10 g; pretreatment condition, 500 ℃ in N2 for 1.5 h; reaction temperature: 350 ℃; space velocity: 1000 h-1
Fig 5 XRD and BET characterization of SiO2 and 10% Zn/SiO2 catalysts
Fig 6 SEM (a, b) andTEM (c, d) characterization for fresh and used 10% Zn/SiO2 catalysts
Fig 7 High-resolution XPS data of the Zn 2p3/2 peak for the fresh and used samples of 5% Zn/SiO2 and 10% Zn/SiO2 catalysts
Fig 8 Thermo gravimetric analysis (TGA) curve of fresh and used 10% Zn/SiO2 catalysts in Air atmosphere
Fig 9 Raman spectroscopy (a) and normalized surface carbon deposit (b) of used 10% Zn/SiO2 catalysts with different Zn loadings
Fig 10 NH3Temperature Programmed Desorption (NH3-TPD) (a) and normalized surface acidity (b) of Zn/SiO2 catalysts with different Zn loadings
Fig 11 Possible activity center and deactivation mechanism for the dehydorchlorination of TCE over Zn/SiO2 catalysts
1 Wang M. X. ; Liu S. T. Chem. Ind. Eng. 2015, 32, 3.
1 王明玺; 刘善堂.. 化学工业与工程, 2015, 32, 3.
2 Zhang, B. Study on Chlorine Species of Air Particles inShijingshan. MS Dissertation, Chengdu University ofTechnology, Chengdu, 2013.
2 张博.北京市石景山区大气环境中氯种态研究[D].成都:成都理工大学, 2013.
3 Wei, M. Photocatalytic Reductive dechlorination ofchlorophenols by TiO2 catalysts. Ph D Dissertation, HubeiUniversity of Technology, Wuhan, 2016.
3 魏蒙. TiO2光催化剂对氯酚化合物的还原脱氯性能的研究[D].武汉:湖北工业大学, 2016.
4 Stach J. ; Pekáarek V. ; Endrst R. ; Hetflejs J. Chemosphere 1999, 39, 2391.
5 Coute N. ; Ortego Jr J. D. ; Richardson J. T. ; Twigg M. V. Appl. Catal. B-Environ 1998, 19, 175.
6 Rivas B. ; Sampedro C. ; López-Fonseca R. ; Gutiérrez-Ortiz M. á. ; Gutiérrez-Ortiz J. I. Appl. Catal. A: Gen 2012, 417, 93.
7 Barriault D. ; Sylvestre M. Can. J. Microbiol. 1993, 39, 594.
8 Yu J. ; Cai W. ; Zhao S. ; Wang Y. ; Chen J. Chin. J. Chem. Eng 2013, 21, 781.
9 Trillas M. ; Peral J. ; Domènech X. J. Chem. Tech. Biotol 1996, 67, 237.
10 Ahmed S. ; Ollis D. F. Sol. Energy 1984, 32, 597.
11 Park Y. ; Kang T. ; Cho Y. S. ; Kim P. ; Park J. C. ; Yi J. Stud.Surf. Sci. Catal. 2003, 146, 637.
12 Gampine A. ; Eyman D. P. J. Catal. 1998, 179, 315.
13 Alwies, W. A. M. van der Heijden; Ad, J. M. Mens; René, Bogerd; Bert, M.Weckhuysen. Catal. Lett. 2008, 122, 238.doi: 10.1007/s10562-008-9436-2
14 Bartsch R. ; Curlin C. L. ; Florkiewicz T. F. ; Minz H. R. ; Navin T. ; Scannell R. ; Zelfel E. Chlorine: Principles andIndustrial Practice; Wiley-VCH GmbH:Weinheim 2000.
15 Mochida I. ; Watanabe H. ; Uchino A. ; Fujitsu H. ; Takeshita K. ; Furuno M. ; Sakura T. ; Nakajima H. J. Mol. Catal 1981, 12, 359.
16 Serhuchev, Y. O.; Bilokopytov, Y. V.; Chernobaev, I.Composition for the Vapor Phase Dehydrohalogenation of 1, 1, 2-Trihaloethane to 1, 1-Dihaloethylene and Methods forPreparing and Using Such Composition. US 2008242902 A1, 2008.
17 Jin Y. X. ; Tang C. ; Meng X. Q. ; Wang X. X. ; Xie G. Q. ; Luo M. F. ; Li X. N. Acta Phys.-Chim. Sin. 2016, 32, 510.
17 靳燕霞; 汤岑; 孟秀清; 王小霞; 谢冠群; 罗孟飞; 李小年. 物理化学学报, 2016, 32, 510.
18 Kapp R.W. Vinyl Chloride A2. In Encyclopedia of Toxicology 3rd ed. Oxford: Wexler, P. Ed.; Academic Press, 2014, 934- 938.
19 Dolfing J. ; Janssen D. Biodegradation 1994, 5, 21.
20 Kokubo K. ; Kitasaka K. ; Oshima T. Org. Lett. 2006, 8, 1597.
21 Turton D. A. ; Martin D. F. ; Wynne K. Phys. Chem. Chem.Phys. 2010, 12, 4191.
22 DeJournett T. D. ; Fritsch J. M. ; McNeill K. ; Arnold W. A. J.Labelled Comp. Radiophram 2005, 48, 353.
23 Tang C. ; Jin Y. X. ; Lu J. Q. ; Li X. N. ; Xie G.Q. ; Luo M. F. Appl. Catal A-Gen. 2015, 508, 10.
24 Guo J. G. ; Li Z. ; Xi H. X. ; He Y. S. ; Wang B. G. China Univ.Tech. (Natural. Sci. Edit.) 2004, 32, 5.
24 郭建光; 李忠; 奚红霞; 何余生; 王伯光. 华南理工大学学报(自然科学版), 2004, 32, 5.
25 Qi L. L. ; Yao J. ; You H. J. Harb. Inst. Technol. 2010, 42, 6.
25 亓丽丽; 姚杰; 尤宏. 哈尔滨工业大学学报, 2010, 42, 6.
26 Zhao J. ; Wang H. R. ; Zhu T. Y. ; Li P. ; Jing P. F. ActaPhys.-Chim. Sin. 2013, 29, 385.
26 赵俊; 王海蕊; 朱廷钮; 李鹏; 荆鹏飞. 物理化学学报, 2013, 29, 385.
27 Baran R. ; Srebowata A. ; Kaminska I. I. ; ?omot D. ; Dzwigaj S. Micropor. Mesopor. Mat. 2013, 180, 209.
28 Anna S. B. ; Rafal B. ; Izabela. I. K. ; Thomas O. ; Jean M. K. ; Stanislaw D. Catal. Today 2015, 251, 73.
29 Chen X. Z. ; Cui B. ; Shi W. P. ; Luo M. Y. Ind. Catal 2001, 9, 5.
29 陈晓珍; 崔波; 石文平; 罗明焰. 工业催化, 2001, 9, 5.
30 Ali H. A. ; Iliadis A. ; Lee U. Solid State Electron 2004, 48, 2025.
31 Ali H. A. ; Iliadis A. Thin Solid Films 2005, 471, 145.
32 Rossetti I. ; Bencini E. ; Trentini L. Appl. Catal. A-Gen. 2005, 292, 118.
33 Guimon C. ; Auroux A. ; Romero E. Appl. Catal. A-Gen. 2003, 251, 199.
[1] Lin-Jun ZHAN,Xiao-Yan SUN,Ying ZHOU,Qiu-Lian ZHU,Yin-Fei CHEN,Han-Feng Lu. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1474-1482.
[2] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[3] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 270-282.
[4] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1785-1794.
[5] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1795-1800.
[6] YUAN Ping, WANG Hao, XUE Yan-Feng, LI Yan-Chun, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1775-1784.
[7] JIN Yan-Xia, TANG Cen, MENG Xiu-Qing, WANG Xiao-Xia, XIE Guan-Qun, LUO Meng-Fei, LI Xiao-Nian. Highly Stable CsNO3/SiO2 Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 510-518.
[8] WANG Lei, YIN Han-Mei, WANG Jian-Hao, WU Li-Zhi, LIU Yue-Ming. Synthesis and Catalytic Oxidation Performance of B-TS-1[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2574-2580.
[9] LI Cui-Can, ZHANG Meng-Xiao, HUA Wei-Ming, YUE Ying-Hong, GAO Zi. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1747-1752.
[10] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1374-1382.
[11] PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 965-972.
[12] ZHANG Chang, QIN Yu-Cai, GAO Xiong-Hou, ZHANG Hai-Tao, MO Zhou-Sheng, CHU Chun-Yu, ZHANG Xiao-Tong, SONG Li-Juan. Modulation of the Acidity and Catalytic Conversion Properties of Y Zeolites Modified by Cerium Cations[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 344-352.
[13] MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1518-1526.
[14] QIN Yu-Cai, GAO Xiong-Hou, DUAN Lin-Hai, FAN Yue-Chao, YU Wen-Guang, ZHANG Hai-Tao, SONG Li-Juan. Effects on Adsorption Desulfurization of CeY Zeolites:Acid Catalysis and Competitive Adsorption[J]. Acta Physico-Chimica Sinca, 2014, 30(3): 544-550.
[15] ZHANG Xiao-Tong, YU Wen-Guang, QIN Yu-Cai, DONG Shi-Wei, PEI Ting-Ting, WANG Lin, SONG Li-Juan. Influence of Surface Acidity of Y Zeolites on the Adsorption of Organic Molecules by In situ Fourier Transform Infrared Spectroscopy[J]. Acta Physico-Chimica Sinca, 2013, 29(06): 1273-1280.