Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 984-992    DOI: 10.3866/PKU.WHXB201702084
Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene
LIAN Chao1,2, ZHANG Kai2, WANG Yuan2
1 Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China;
2 Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(969KB) Export: BibTeX | EndNote (RIS)      


It is of significance to investigate the support effect in heterogeneous metal catalysts. Pt/Fe3O4, Pt/ γ-Fe2O3, and Pt/α-Fe2O3 nanocomposites with the same Pt nanoclusters were prepared by adsorbing Pt colloidal particles stabilized with simple ions and solvent molecules on different iron oxide supports. The catalytic performances over the as-prepared catalysts for the selective hydrogenation of o-chloronitrobenzene (o-CNB) in the absence of solvent were evaluated. It was found that the catalytic activity and selectivity over the prepared iron oxide-supported Pt nanocluster catalysts were higher than those of a commercial Pt/C catalyst. The selectivity towards o-chloroaniline over Pt/γ-Fe2O3 or Pt/α-Fe2O3 was higher than that over Pt/Fe3O4, while the catalytic activity over Pt/Fe3O4 was 50% higher than that over Pt/α-Fe2O3. The Pt/iron oxide catalysts also exhibited excellent catalytic properties for the solvent-free selective hydrogenation of other tested halonitrobenzenes, with the selectivity to corresponding haloanilines being > 99%. In addition, the influences of temperature and hydrogen pressure on the solvent-free selective hydrogenation of o-CNB over Pt/Fe3O4 were studied. This work is helpful in understanding the superior properties of iron oxide-supported metal nanocluster catalysts and provides a foundation for further developing highly efficient catalytic systems based on metal nanoclusters.

Key wordsPlatinum      Metal nanocluster      Iron oxide      Halonitrobenzene      Haloaniline      Selective hydrogenation     
Received: 28 November 2016      Published: 08 February 2017
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21573010), MOST, China (2016YFE0118700), and Fundamental Research Funds for the Central Universities, China (2015RC070).

Corresponding Authors: WANG Yuan     E-mail:
Cite this article:

LIAN Chao, ZHANG Kai, WANG Yuan. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene. Acta Phys. -Chim. Sin., 2017, 33(5): 984-992.

URL:     OR

(1) Xiao, C.; Wang, X. D.; Lian, C.; Liu, H. Q.; Liang, M. H.; Wang, Y. Curr. Org. Chem. 2012, 16, 280. doi: 10.2174/138527212798993077
(2) Zuo, B. J.; Wang, Y.; Wang, Q. L.; Zhang, J. L.; Wu, N. Z.; Peng, L. D.; Gui, L. L.; Wang, X. D.; Wang, R. M.; Yu, D. P. J.Catal. 2004, 222, 493. doi: 10.1016/j.jcat.2003.12.007
(3) Zhang, J. L.; Wang, Y.; Ji, H.; Wei, Y. G.; Wu, N. Z.; Zuo, B. J.; Wang, Q. L. J. Catal. 2005, 229, 114. doi: 10.1016/j.jcat.2004.09.029
(4) Chen, Y. Y.; Wang, C.; Liu, H. Y.; Qiu, J. S.; Bao, X. H. Chem.Commun. 2005, 5298. doi: 10.1039/b509595f
(5) Chen, Y. Y.; Qiu, J. S.; Wang, X. K.; Xiu, J. H. J. Catal. 2006, 242, 227. doi: 10.1016/j.jcat.2006.05.028
(6) Pietrowski, M.; Zieliński, M.; Wojciechowska, M. Catal. Lett. 2009, 128, 31. doi: 10.1007/s10562-008-9702-3
(7) Fan, G. Y.; Zhang, L.; Fu, H. Y.; Yuan, M. L.; Li, R. X.; Chen, H.; Li, X. J. Catal. Commun. 2010, 11, 451. doi: 10.1016/j.catcom.2009.11.021
(8) Liu, M. H.; Zhang, J.; Liu, J. Q.; Yu, W.W. J. Catal. 2011, 278, 1. doi: 10.1016/j.jcat.2010.11.009
(9) Xu, X. S.; Chen, A. A.; Zhou, L.; Li, X. Q.; Gu, H. Z.; Yan, X.H. Chin. J. Catal. 2013, 34, 391. doi: 10.3724/SP.J.1088.2013.20959
(10) Dutta, D.; Dutta, D. K. Appl. Catal. A 2014, 487, 158.doi: 10.1016/j.apcata.2014.09.004
(11) Fu, T.; Hu, P.; Wang, T.; Dong, Z.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Ding, W. P. Chin. J. Catal. 2015, 36, 2030.doi: 10.1016/S1872-2067(15)60904-4
(12) Iihama, S.; Furukawa, S.; Komatsu, T. ACS Catal. 2016, 6, 742.doi: 10.1021/acscatal.5b02464
(13) Liang, M. H.; Wang, X. D.; Liu, H. Q.; Liu, H. C.; Wang, Y. J.Catal. 2008, 255, 335. doi: 10.1016/j.jcat.2008.02.025
(14) Xiao, C.; Liang, M. H.; Gao, A.; Xie, J. L.; Wang, Y.; Liu, H. C.J. Nanopart. Res. 2013, 15, 1822. doi: 10.1007/s11051-013-1822-z
(15) Cárdenas-Lizana, F.; Gómez-Quero, S.; Keane, M. A. Appl.Catal. A 2008, 334, 199. doi: 10.1016/j.apcata.2007.10.007
(16) Cárdenas-Lizana, F.; Gómez-Quero, S.; Hugon, A.; Delannoy, L.; Louis, C.; Keane, M. A. J. Catal. 2009, 262, 235.doi: 10.1016/j.jcat.2008.12.019
(17) Cárdenas-Lizana, F.; Pedro, Z. M.; Gómez-Quero, S.; Keane, M.A. J. Mol. Catal. A 2010, 326, 48. doi: 10.1016/j.molcata.2010.04.006
(18) Xu, D. Q.; Hu, Z. Y.; Li, W.W.; Luo, S. P.; Xu, Z. Y. J. Mol.Catal. A 2005, 235, 137. doi: 10.1016/j.molcata.2005.04.004
(19) Xiao, C. X.; Wang, H. Z.; Mu, X. D.; Kou, Y. J. Catal. 2007, 250, 25. doi: 10.1016/j.jcat.2007.05.009
(20) Ichikawa, S.; Tada, M.; Iwasawa, Y.; Ikariya, T. Chem.Commun. 2005, 924. doi: 10.1039/b414423f
(21) Xi, C. Y.; Cheng, H. Y.; Hao, J. M.; Cai, S. X.; Zhao, F. Y. J.Mol. Catal. A 2008, 282, 80. doi: 10.1016/j.molcata.2007.11.027
(22) Meng, X. C.; Cheng, H. Y.; Fujita, S.; Hao, Y. F.; Shang, Y. J.; Yu, Y. C.; Cai, S. X.; Zhao, F. Y.; Arai, M. J. Catal. 2010, 269, 131. doi: 10.1016/j.jcat.2009.10.024
(23) Lian, C.; Liu, H. Q.; Xiao, C., Yang, W.; Zhang, K.; Liu, Y.; Wang, Y. Chem. Commun. 2012, 48, 3124. doi: 10.1039/c2cc16620h
(24) Sun, Z. Y.; Zhang, H. Y.; An, G. M.; Yang, G. Y.; Liu, Z. M. J.Mater. Chem. 2010, 20, 1947. doi: 10.1039/b921510g
(25) Wang, Y. N.; Yang, Y. X.; Li, Y.W.; Lai, J. H.; Sun, K. P. Catal.Commun. 2012, 19, 110. doi: 10.1016/j.catcom.2011.12.014
(26) Liu, M. H.; Mo, X. X.; Liu, Y. Y.; Xiao, H. L.; Zhang, Y.; Jing, J. Y.; Colvin, V. L.; Yu, W.W. Appl. Catal. A 2012, 439440, 192. doi: 10.1016/j.apcata.2012.07.006
(27) Zhan, Q. F.; Ma, L.; Lu, C. S.; Xu, X. L.; Lyu, J. H.; Li, X. N.React. Kinet. Mech. Cat. 2015, 114, 629. doi: 10.1007/s11144-014-0826-8
(28) Wang, Y. N.; Yang, Y. X.; Li, Y.W.; Lai, J. H.; Sun, K. P. ActaPhys. -Chim. Sin. 2013, 29, 2239. [王亚南, 杨玉霞, 李永文, 赖俊华, 孙鲲鹏. 物理化学学报, 2013, 29, 2239.] doi: 10.3866/PKU.WHXB201308151
(29) Wang, Y.; Ren, J.W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Chem.Mater. 2000, 12, 1622. doi: 10.1021/cm0000853
(30) Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.doi: 10.1021/jp022505c
(31) Mu, Y. Y.; Liang, H. P.; Hu, J. S.; Jiang, L.; Wan, L. J. J. Phys.Chem. B 2005, 109, 22212. doi: 10.1021/jp0555448
(32) Garsany, Y.; Epshteyn, A.; Purdy, A. P.; More, K. L.; Swider-Lyons, K. E. J. Phys. Chem. Lett. 2010, 1, 1977. doi: 10.1021/jz100681g
(33) Sonstrom, P.; Arndt, D.; Wang, X. D.; Zielasek, V.; Baumer, M.Angew. Chem. Int. Edit. 2011, 50, 3888. doi: 10.1002/anie.201004573
(34) Qi, J.; Jiang, L. H.; Jing, M. Y.; Tang, Q.W.; Sun, G. Q. Int. J.Hydrog. Energy 2011, 36, 10490. doi: 10.1016/j.ijhydene.2011.06.022
(35) Zheng, N.; Zhu, C. M.; Sun, B.; Shi, Z. J.; Liu, Y.; Wang, Y.Acta Phys. -Chim. Sin. 2012, 28, 2263. [郑宁, 朱春梅, 孙斌, 施祖进, 刘岩, 王远. 物理化学学报, 2012, 28, 2263.]doi: 10.3866/PKU.WHXB201208171
(36) Zhang, L.W.; Zheng, N.; Gao, A.; Zhu, C. M.; Wang, Z. Y.; Wang, Y.; Shi, Z. J.; Liu, Y. J. Power Sources 2012, 220, 449.doi: 10.1016/j.jpowsour.2012.08.009
(37) Pushkarev, V. V.; An, K. J.; Alayoglu, S.; Beaumont, S. K.; Somorjai, G. A. J. Catal. 2012, 292, 64. doi: 10.1016/j.jcat.2012.04.022
(38) Wang, P.; Zhao, J.; Li, X. B.; Yang, Y.; Yang, Q. H.; Li, C.Chem. Commun. 2013, 49, 3330. doi: 10.1039/c3cc39275a
(39) Zhu, C. M.; Gao, A.; Wang, Y.; Liu, Y. Chem. Commun. 2014, 50, 13889. doi: 10.1039/c4cc02391a
(40) Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, D. Q.; Golberg, D.; Yamada, A.; Zhou, H. Adv. Mater. 2014, 26, 4659. doi: 10.1002/adma.201400162
(41) Chen, C. Y.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S. Chem. Commun. 2015, 51, 5936.doi: 10.1039/c4cc09383f
(42) Schrader, I.; Warneke, J.; Backenkohler, J.; Kunz, S . J. Am.Chem. Soc. 2015, 137, 905. doi: 10.1021/ja511349p
(43) Speder, J.; Zana, A.; Arenz, M. Catal. Today 2016, 262, 82. doi: 10.1016/j.cattod.2015.09.021
(44) Liu, H. Q.; Liang, M. H.; Xiao, C.; Zheng, N.; Feng, X. H.; Liu, Y.; Xie, J. L.; Wang, Y. J. Mol. Catal. A 2009, 308, 79.doi: 10.1016/j.molcata.2009.03.033
(45) Kratky, V.; Kralik, M.; Mecarova, M.; Stolcova, M.; Zalibera, L.; Hronec, M. Appl. Catal. A 2002, 235, 225. doi: 10.1016/S0926-860X(02)00274-0
(46) Becker, K. D.; VonWurmb, V.; Litterst, F. J. J. Phys. Chem.Solids 1993, 54, 923. doi: 10.1016/0022-3697(93)90220-L
(47) Szotek, Z.; Temmerman, W. M.; Svane, A.; Petit, L.; Stocks, G.M.; Winter, H. Phys. Rev. B 2003, 68, 54415. doi: 10.1103/PhysRevB.68.054415
(48) Xiong, S.; Xu, J.; Chen, D.; Wang, R. M.; Hu, X. L.; Shen, G.Z.; Wang, Z. L. CrystEngComm 2011, 13, 7114. doi: 10.1039/c1ce05569k
(49) Fu, X. Y.; Wang, Y.; Wu, N. Z.; Gui, L. L.; Tang, Y. Q. J.Colloid Interface Sci. 2011, 243, 326. doi: 10.1006/jcis.2001.7861

[1] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[2] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[3] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 563-572.
[4] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17.
[5] LU Shan-Fu, PENG Si-Kan, XIANG Yan. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1859-1865.
[6] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474.
[7] LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 61-74.
[8] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1727-1732.
[9] PAN Jian-Ming, YANG Wei, SUN Hai-Biao, ZHENG Xiang, LI Guo-Hua. Preparation and Electrocatalytic Activity of Tungsten Carbide-Montmorillonite Composite[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 998-1006.
[10] OU Zhi-Ze, JU Bao-Long, GAO Yun-Yan, WANG Zi-Chao, HUANG Gan, QIAN Yi-Meng. Alkynylplatinum(Ⅱ) 2,6-Bis(N-ethylbenzimidazol-2'-yl)pyridine Complexes: Effect of Alkynyl Ligand on G-quadruplex Binding Properties and Anticancer Activity[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2386-2394.
[11] XIAO Xue-Chun, SHI Wei, NI Zhe-Ming. Selective Hydrogenation Mechanism of Cinnamaldehyde on Au(111) Surface[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1456-1464.
[12] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1267-1273.
[13] SUN Hai-Jie, LI Yong-Yu, LI Shuai-Hui, ZHANG Yuan-Xin, LIU Shou-Chang, LIU Zhong-Yi, REN Bao-Zeng. ZnSO4 and La2O3 as Co-Modifier of the Monoclinic Ru Catalyst for Selective Hydrogenation of Benzene to Cyclohexene[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1332-1340.
[14] AO Ping, XU Xiang-Sheng, XU Xiao-Xiao, LI Jia-Heng, YAN Xin-Huan. Low-Temperature Total Oxidation of Toluene over Assembled Pt/TiO2 Catalyst[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 950-956.
[15] WANG Zhan-Qi, ZHOU Zhi-Ming, ZHANG Rui, LI Li, CHENG Zhen-Min. Selective Hydrogenation of Phenylacetylene over Pd-Cu/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2315-2322.