Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 960-967    DOI: 10.3866/PKU.WHXB201702086
Article     
Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers
DAI Wei-Guo1, HE Dan-Nong1,2
1 National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China;
2 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(1984KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The photoelectrochemical method was combined with the in-situ molecular imprinting technique. Using the chiral ibuprofen enantiomers (S-ibuprofen and R-ibuprofen) as template molecules, S-ibuprofen and R-ibuprofen molecular imprinting sites were constructed on the surface of monocrystalline TiO2 nanorods. The imprinted electrodes were capable of selective recognition and catalytic oxidation of S-ibuprofen and Ribuprofen. The morphology, structure, and composition of the electrode were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The electron transfer resistance of the electrode surface was studied with electrochemical impedance spectroscopy. The photoelectrochemical recognition and degradation were measured photoelectrochemically using the prepared imprinted electrodes as the working electrode. The TiO2 prepared was a single crystal nanorod array. The imprinted sites were successfully constructed on the surface of TiO2 nanorods and had shape selective adsorption capacities. The selective recognition and selective oxidative degradation of chiral ibuprofen enantiomers on the surface of artificial photoelectrocatalysts were realized for the first time.



Key wordsIbuprofen      Monocrystalline TiO2      Photoelectrochemical recognition      Shape selective adsorption      Selective oxidative degradation     
Received: 12 December 2016      Published: 08 February 2017
MSC2000:  O649  
Fund:  

The project was supported by the International Science and Technology Cooperation Program of China (2015CB931902).

Corresponding Authors: HE Dan-Nong     E-mail: hdn_nercn@163.com
Cite this article:

DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201702086     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I5/960

(1) Deamer, D.W.; Dick, R.; Thiemann, W.; Shinitzky, M. Chirality 2007, 19 (10), 751. doi: 10.1002/chir
(2) Cronin, J. R.; Pizzarello, S. Science 1997, 275 (5302), 951.doi: 10.1126/science.275.5302.951
(3) Fang, Z.; Guo, Z.; Qin, Q.; Fan, J.; Yin, Y.; Zhang, W. J.Chromatogr. Sci. 2013, 51 (2), 133. doi: 10.1093/chromsci/bms117
(4) Li, W.; Li, Y.; Fu, Y.; Zhang, J. Korean J. Chem. Eng. 2013, 30 (7), 1448. doi: 10.1007/s11814-013-0048-1
(5) Wang, Y.; Han, Q.; Zhang, Q.; Huang, Y.; Guo, L.; Fu, Y. Anal.Methods 2013, 5 (20), 5579. doi: 10.1039/C3AY40882E
(6) Saraç, S.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 2000, 875 (875), 379. doi: 10.1016/S0021-9673(99)01177-2
(7) Allenmark, S.; Schurig, V. J. Mater. Chem. 1997, 7 (10), 1955.doi: 10.1039/A702403G
(8) Caballo, C.; Sicilia, M. D.; Rubio, S. Anal. Chim. Acta 2013, 761 (761), 102. doi: 10.1016/j.aca.2012.11.044
(9) Ruan, Y. F.; Zhang, N.; Zhu, Y. C.; Zhao, W.W.; Xu, J. J.; Chen, H. Y. Acta Phys. -Chim. Sin. 2017, 33 (3), 476. [阮弋帆, 张楠, 朱圆城, 赵伟伟, 徐静娟, 陈洪渊. 物理化学学报, 2017, 33 (3), 476.] doi: 10.3866/PKU.WHXB201611141.
(10) Chen, K.; Liu, M.; Zhao, G.; Shi, H.; Fan, L.; Zhao, S. Environ.Sci. Technol. 2012, 46 (21), 11955. doi: 10.1021/es302327w
(11) Zhou, H.; Tang, Y.; Zhai, J.; Wang, S.; Tang, Z.; Jiang, L.Sensors 2009, 9 (2), 1094. doi: 10.3390/s90201094
(12) Lu, Y. Acta Phys. -Chim. Sin. 2016, 32(9), 2185. [陆阳. 物理化学学报, 2016, 32 (9), 2185.] doi: 10.3866/PKU.WHXB201605255
(13) Bai, X.; Zhang, X.; Hua, Z.; Ma, W.; Dai, Z.; Huang, X.; Gu, H.J. Alloy. Compd. 2014, 599 (3), 10. doi: 10.1016/j.jallcom.2014.02.049
(14) Patel, N.; Jaiswal, R.; Warang, T.; Scarduelli, G.; Dashora, A.; Ahuja, B. L.; Kothari, D. C.; Miotello, A. Appl. Catal. BEnviron. 2014, 150151 (1641), 74. doi: 10.1016/j.apcatb.2013.11.033
(15) Kaur, J.; Singhal, S. Ceram. Int. 2014, 40 (5), 7417.doi: 10.1016/j.ceramint.2013.12.088
(16) Yu, H. C.; Huang, X. Y.; Li, H.; Lei, F. H.; Tan, X. C.; Wei, Y.C.; Wu, H. Y. Acta Phys. -Chim. Sin. 2014, 30 (11), 2085. [余会成, 黄学艺, 李浩, 雷福厚, 谭学才, 韦贻春, 吴海鹰. 物理化学学报, 2014, 30 (11), 2085.] doi: 10.3866/PKU.WHXB201409051
(17) Xu, S.W.; Lin, D. Q.; Yao, S. J. Acta Phys. -Chim. Sin. 2016, 32 (11), 2811. [徐诗文, 林东强, 姚善泾. 物理化学学报, 2016, 32 (11), 2811.] doi: 10.3866/PKU.WHXB201609131
(18) Flippin, J. L.; Huggett, D.; Foran, C. M. Aquat. Toxicol. 2007, 81 (1), 73. doi: 10.1016/j.aquatox.2006.11.002
(19) Pomati, F.; Netting, A. G.; Calamari, D.; Neilan, B. A. Aquat.Toxicol. 2004, 67 (4), 387.
(20) Wei, Y. H.; Liu, J.; Qu, D. Acta Microbiol. Sin. 2011, 51 (5), 586. doi: 10.1016/j.aquatox.2004.02.001
(21) Yang, J. Y.; Ma, H. L.; Lu, B.; Ma, G. H. Acta Optica Sinica 2007, 27 (10), 1909. [杨俊毅, 马洪良, 鲁波, 马国宏. 光学学报, 2007, 27 (10), 1909.] doi: 10.3321/j.issn:0253-2239.2007.10.035

[1] XU Shi-Wen, LIN Dong-Qiang, YAO Shan-Jing. Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2811-2818.
[2] WAN Dong-Hua, ZHENG Ou, ZHOU Yan, WU Li-Yu. Solubilization of Ibuprofen in Pluronic Block Copolymer F127 Micelles[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3243-3248.
[3] XU Fen;SUN Li-Xian;TAN Zhi-Cheng;LI Rui-Lian;TIAN Qi-Feng;ZHANG Tao. Low Temperature Heat Capacity of (S)-ibuprofen[J]. Acta Phys. -Chim. Sin., 2005, 21(01): 1-5.