Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 993-1000    DOI: 10.3866/PKU.WHXB201702087
ARTICLE     
Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane
Kun YANG1,Qi-Lu YAO1,Zhang-Hui LU1,*(),Zhi-Bing KANG2,Xiang-Shu CHEN1,*()
1 Jiangxi Inorganic Membrane Materials Engineering Research Centre, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
2 School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330036, P. R. China
Download: HTML     PDF(3070KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Noble-metal-free CuMo nanoparticles (NPs) without surfactant or support have been facilely prepared using NaBH4 as a reducing agent. The as-prepared CuMo nanocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area measurements, and used as catalysts for the hydrolysis of ammonia borane (AB, NH3BH3) at room temperature. The as-synthesized Cu0.9Mo0.1 NPs exhibited a high activity towards the hydrolysis of AB with a turnover frequency (TOF) of 14.9 min-1, a higher value than that reported for Cu catalysts. Our synthesis is not limited to CuMo NPs alone, but can easily be extended to CuW (3.6 min-1), CuCr (2 min-1), NiMo (55.6 min-1), and CoMo (21.7 min-1) NPs, providing a general approach to Cu-M (M = Mo, W, Cr) and TM-Mo (TM = Cu, Ni, Co) NPs as a series of novel catalysts for the hydrolysis of AB. The enhanced activity of bimetallic NPs may be attributed to the synergistic effects of the Cu-M NPs induced by the strain and ligand effects.



Key wordsCopper      Ammonia borane      Hydrolysis      Hydrogen energy      Nanoparticle     
Received: 15 December 2016      Published: 08 February 2017
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21463012);Young Scientist Foundation of Jiangxi Province, China(20133BCB23011);and"Gan-po talent 555"Project of Jiangxi Province, China
Corresponding Authors: Zhang-Hui LU,Xiang-Shu CHEN     E-mail: luzh@jxnu.edu.cn;cxs66cn@jxnu.edu.cn
Cite this article:

Kun YANG,Qi-Lu YAO,Zhang-Hui LU,Zhi-Bing KANG,Xiang-Shu CHEN. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane. Acta Physico-Chimica Sinca, 2017, 33(5): 993-1000.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702087     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/993

 
 
 
 
Catalyst powderAverage particle size/nmaBET surface area/(m2.g-1)bTOF/ min-1c
Cu15.6±2.814.80.2
Cu0.9Mo0.15.2±0.738.414.9
Cu0.9W0.15.9±0.927.03.6
Cu0.95Cr0.056.8±0.927.72.0
 
 
Catalystn(metal)/n(AB)T/KTOF/min -1Ref.
Cu0.9Mo0.10.0629814.9this work
Cu/RGO0.12983.6153
Cu0.9W0.10.062983.6this work
Cu@SiO20.092983.2452
Cu0.95Cr0.050.062982.0this work
zeolite-confined Cu0.0132981.2554
p (AMPS)-Cu0.0693030.7255
Cu2O NPs0.152930.1872
Cu/γ-Al2O30.0182980.2742
Cu NPs0.152930.0672
 
 
 
 
1 Schlapbach L. ; Züttel A. Nature 2001, 414, 353.
2 Chen P. ; Xiong Z. ; Luo J. ; Lin J. ; Tan K. L. Nature 2002, 420, 302.
3 Hannauer J. ; Akdim O. ; Demirci U. B. ; Geantet C. ; Herrmann J. M. ; Miele P. ; Xu Q. Energy Environ. Sci. 2011, 4, 3355.
4 Lu L. L. ; Zhang H. J. ; Zhang S.W. ; Li F. L. Angew. Chem.Int. Ed. 2015, 127, 9460.
5 Liang C. ; Liang S. ; Xia Y. ; Huang H. ; Gan Y. P. ; Tao Y. X. ; Zhang W. K. Acta Phys.-Chim. Sin. 2015, 31 (4), 627.
5 梁初; 梁升; 夏阳; 黄辉; 甘永平; 陶新永; 张文魁. 物理化学学报, 2015, 31 (4), 627.
6 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Xing W. Acta Phys.-Chim. Sin 2016, 32 (7), 1556.
6 常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
7 Wang Z. L. ; Wang H. L. ; Yan J. M. ; Ping Y. ; O S. I. ; Li S. J. ; Jiang Q. Chem. Commun. 2014, 50, 2732.
8 Wang Z. L. ; Yan J. M. ; Ping Y. ; Wang H. L. ; Zheng W. T. ; Jiang Q. Angew. Chem. Int. Ed. 2013, 52, 4406.
9 Zhu Q. L. ; Xu Q. Energy Environ. Sci. 2015, 8, 478.
10 Yadav M. ; Xu Q. Energy Environ. Sci. 2012, 5, 9698.
11 Lu Z. H. ; Xu Q. Funct. Mater. Lett. 2012, 5, 123001.
12 Peng B. ; Chen J. Energy Environ. Sci. 2008, 1, 479.
13 Jiang H. L. ; Xu Q. Catal. Today 2011, 170, 56.
14 Demirci U. B. ; Miele P. J. Power Sources 2010, 195, 4030.
15 Sutton A. D. ; Burrell A. K. ; Dixon D. A. ; Garner E. B. ; Gordon J. C. ; Nakagawa T. ; Ott K. C. ; Robinson J. P. ; Vasiliu M. Science 2011, 311, 1426.
16 Cheng H. F. ; Kamegawa T. ; Mori K. ; Yamashita H. Angew.Chem. Int. Ed. 2014, 53, 2910.
17 Cheng F. Y. ; Ma H. ; Li Y. M. ; Chen J. Inorg. Chem. 2007, 46, 788.
18 Heldebrant D. J. ; Karkamkar A. ; Hess N. J. ; Bowden M. ; Rassat S. ; Zheng F. ; Rappe K. ; Autrey T. Chem. Mater. 2008, 20, 5332.
19 Li Z. Y. ; Zhu G. S. ; Lu G. Q. ; Qiu S. L. ; Yao X. D. J. Am.Chem. Soc. 2010, 132, 1490.
20 Zhou L. M. ; Zhang T. R. ; Tao Z. L. ; Chen J. Nano Res. 2014, 7, 774.
21 Zhu Q. L. ; Li J. ; Xu Q. J. Am. Chem. Soc. 2013, 135, 10210.
22 Ranmachandran P. V. ; Gagare P. D. Inorg. Chem. 2007, 46, 7810.
23 Guo L. L. ; Gu X. J. ; Kang K. ; Wu Y. Y. ; Cheng J. ; Liu P. L. ; Wang T. S. ; Su H. Q. J. Mater. Chem. A 2015, 3, 22807.
24 Sun D. H. ; Mazumder V. ; Metin ?. ; Sun S. H. ACS Nano 2011, 5, 6458.
25 Kang J. X. ; Chen T.W. ; Zhang D. F. ; Guo L. Nano Energy 2016, 23, 145.
26 Mori K. ; Miyawaki K. ; Yamashita H. ACS Catal. 2016, 6, 3128.
27 Rej S. ; Hsia C. F. ; Chen T. Y. ; Lin F. C. ; Huang J. S. ; Huang M. H. Angew. Chem. Int. Ed. 2016, 55, 7222.
28 Yang L. ; Su J. ; Meng X. Y. ; Luo W. ; Cheng G. Z. J. Mater.Chem. A 2013, 1, 10016.
29 Wen M. ; Sun B. ; Zhou B. ; Wu Q. S. ; Peng J. J. Mater. Chem. 2012, 22, 11988.
30 Chandra M. ; Xu Q. J. Power Sources 2007, 168, 135.
31 Chandra M. ; Xu Q. J. Power Sources 2006, 156, 190.
32 Wang X. ; Liu D. P. ; Song S. Y. ; Zhang H. J. J. Am. Chem.Soc. 2013, 135
33 Chen W. Y. ; Ji J. ; Feng X. ; Duan X. Z. ; Qian G. ; Li P. ; Zhou X. G. ; Chen D. ; Yuan W. K. J. Am. Chem. Soc. 2014, 136
34 Khalily M. A. ; Eren H. ; Akbayrak S. ; Susapto H. H. ; Biyikli N. ; ?zkar S. ; Guler M. O. Angew. Chem. Int. Ed. 2016, 128, 12445.
35 Zahmak?ran M. ; ?zkar S. Appl. Catal. B: Environ. 2009, 89, 104.
36 Yao Q. L. ; Lu Z. H. ; Jia Y. S. ; Chen X. S. ; Liu X. Int. J.Hydrog. Energy 2015, 40, 2207.
37 Yao Q. L. ; Shi W. M. ; Fang G. ; Lu Z. H. ; Zhang X. L. ; Tao D. J. ; Kong D. J. ; Chen X. S. J. Power Sources 2014, 257, 293.
38 Fuku K. ; Hayashi R. ; Takakura S. ; Kamegawa T. ; Mori K. ; Yamashita H. Angew. Chem. Int. Ed. 2013, 52, 7446.
39 Chen Y. Z. ; Liang L. F. ; Yang Q. H. ; Hong M. C. ; Xu Q. ; Yu S. H. ; Jiang H. L. Mater. Horiz. 2015, 2, 606.
40 Xi P. X. ; Chen F. J. ; Xie G. Q. ; Ma C. ; Liu H. Y. ; Shao C.W. ; Wang J. ; Xu Z. H. ; Xu X. M. ; Zeng Z. Z. Nanoscale 2012, 4, 5597.
41 Chen Y. Z. ; Xu Q. ; Yu S. H. ; Jiang H. L. Small 2015, 11, 71.
42 Xu Q. ; Chandra M. J. Power Sources 2006, 163, 364.
43 Li P. Z. ; Aranishi K. ; Xu Q. Chem. Commun. 2012, 48, 3173.
44 Cao C. Y. ; Chen C. Q. ; Li W. ; Song W. G. ; Cai W. ChemSusChem 2010, 3, 1241.
45 Metin ?. ; Mazumder V. ; ?zkar S. ; Sun S. H. J. Am. Chem.Soc. 2010, 132, 1468.
46 Zhang J. K. ; Chen C. Q. ; Yan W. J. ; Duan F. F. ; Zhang B. ; Gao Z. ; Qin Y. Catal. Sci. Technol. 2010, 6, 2112.
47 Xu F. Q. ; Hu X. F. ; Cheng F. Y. ; Liang J. ; Tao Z. L. ; Chen J. Chin. J. Inorg. Chem. 2015, 31 (1), 103.
47 徐凤勤; 胡小飞; 程方益; 梁静; 陶占良;陈军. 无机化学学报, 2015, 31 (1), 103.
48 Yan J. M. ; Zhang X. B. ; Shioyama H. ; Xu Q. J. PowerSources 2010, 195, 1091.
49 Umegaki T. ; Yan J. M. ; Zhang X. B. ; Shioyama H. ; Kuriyama N. ; Xu Q. J. Power Sources 2010, 195, 8209.
50 Li Z. ; He T. ; Liu L. ; Chen W. D. ; Zhang M. ; Wu G. T. ; Chen P. Chem. Sci. 2017, 8, 781.
51 Yang Y.W. ; Feng G. ; Lu Z. H. ; Hu N. ; Zhang F. ; Chen X. S. Acta Phys.-Chim. Sin 2014, 30 (6), 1180.
51 杨宇雯; 冯刚; 卢章辉; 胡娜; 张飞; 陈祥树. 物理化学学报, 2014, 30 (6), 1180.
52 Yao Q. L. ; Lu Z. H. ; Zhang Z. J. ; Chen X. S. ; Lan Y. Q. Sci.Rep. 2014, 4, 7597.
53 Yang Y.W. ; Lu Z. H. ; Hu Y. J. ; Zhang Z. J. ; Shi W. M. ; Chen X. S. ; Wang T. T. RSC Adv. 2014, 4, 13749.
54 Zahmak?ran M. ; Durap F. ; ?zkar S. Int. J. Hydrog. Energy 2010, 35, 187.
55 Ozay O. ; Inger E. ; Aktas N. ; Sahiner N. Int. J. Hydrog.Energy 2011, 36, 8209.
56 Yao Q. L. ; Lu Z. H. ; Wang Y. Q. ; Chen X. S. ; Feng G. J.Phys. Chem. C 2015, 119, 14167.
57 Lu Z. H. ; Li J. P. ; Zhu A. L. ; Yao Q. L. ; Huang W. ; Zhou R.Y. ; Zhou R. F. ; Chen X. S. Int. J. Hydrog. Energy 2013, 38, 5330.
58 Lu Z. H. ; Li J. P. ; Feng G. ; Yao Q. L. ; Zhang F. ; Zhou R. Y. ; Tao D. J. ; Chen X. S. ; Yu Z. Q. Int. J. Hydrog. Energy 2014, 39, 13389.
59 Yan J. M. ; Zhang X. B. ; Han S. ; Shioyama H. ; Xu Q. Angew.Chem. Int. Ed. 2008, 47, 2287.
60 Feng K. ; Zhong J. ; Zhao B. H. ; Zhang H. ; Xu L. ; Sun X. H. ; Lee S. T. Angew. Chem. Int. Ed. 2016, 55, 11950.
61 Bulut A. ; Yurderi M. ; Ertas ?. E. ; Celebi M. ; Kaya M. ; Zahmakiran M. Appl. Catal. B: Environ. 2016, 180, 121.
62 Umegaki T. ; Yan J. M. ; Zhang X. B. ; Shioyama H. ; Kuriyama N. ; Xu Q. Int. J. Hydrog. Energy 2009, 34, 3816.
63 Kalidindi S. B. ; Indirani M. ; Jagirdar B. R. Inorg. Chem. 2008, 47, 7424.
64 Yan J. M. ; Wang Z. L. ; Wang H. L. ; Jiang Q. J. Mater. Chem. 2012, 22, 10990.
65 Li P. Z. ; Aijaz A. ; Xu Q. Angew. Chem. Int. Ed. 2012, 51, 6753.
66 Wen M. C. ; Cui Y.W. ; Kuwahara Y. ; Mori K. ; Yamashita H. ACS Appl. Mater. Inter. 2016, 8, 21278.
67 Yao Q. L. ; Lu Z. H. ; Huang W. ; Chen X. S. ; Zhu J. J. Mater.Chem. A 2016, 4, 8579.
68 Wang H. L. ; Yan J. M. ; Li S. J. ; Zhang X.W. ; Jiang Q. J.Mater. Chem. A 2015, 3, 121.
69 Patel N. ; Fernandes R. ; Miotello A. J. Catal. 2010, 271, 315.
70 Fernandes R. ; Patel N. ; Miotello A. ; Jaiswal R. ; Kothari D. C. Int. J. Hydrog. Energy 2012, 37, 2397.
71 Yang K. K. ; Yao Q. L. ; Huang W. ; Cheng X. S. ; Lu Z. H. Int.J. Hydrog. Energy 2017.
72 Kalidindi S. B. ; Sanyal U. ; Jagirdar B. R. Phys. Chem. Chem.Phys. 2008, 10, 5870.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Gang LEI,Yan HE. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 11-21.
[3] Xiang-Feng HUANG,Wan-Qi LIU,Yong-Jiao XIONG,Kai-Ming PENG,Jia LIU,Li-Jun LU. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 49-64.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[5] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1699-1708.
[6] Fan CHEN,Zhong-Yue WANG,Yan-Yan ZHANG,Ke-Han YU,Li-Xing WENG,Wei WEI. Synthesis of Poly(acrylic acid)-Functionalized La1-xEuxF3 Nanocrystals with High Photoluminescence for Cellular Imaging[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1446-1452.
[7] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[8] Jin SUN,Zong-Ling DING,Yuan-Qin YU,Guang LI. Absorption Spectra of Azobenzene Molecules on Au Nanoparticle Surface[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2199-2206.
[9] Xiao-Yu CHEN,Jing-Dong WANG,An-Chi YU. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2184-2190.
[10] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (I): Surface Atom Identification[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2113-2118.
[11] LI Yue, ZHANG Ting-Ting, WANG Juan, ZHU Zhen, JIA Bing, YU Jiang. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2084-2092.
[12] ZHANG Ji-Ping, CHENG Shuo-Zhen, LI Xue-Feng, DONG Jin-Feng. pH- and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl) pyrrolidone) in Aqueous Solution[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2018-2026.
[13] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1604-1622.
[14] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1556-1592.
[15] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1795-1800.