Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 869-885    DOI: 10.3866/PKU.WHXB201702088
REVIEW     
Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials
Chong-Yi LING,Jin-Lan WANG*()
Download: HTML     PDF(8460KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hydrogen produced from electrochemical water-splitting driven by renewable resource-derived electricity is considered a promising candidate for clean energy. However, sustainable hydrogen production from water splitting requires highly active catalysts to make the process efficient. Catalysts based on graphene-like two-dimensional (2D) materials present great potential in the hydrogen evolution reaction (HER) and thus gain attention. In this review, which is a combination of our recent works, we highlight research efforts towards electrocatalysts for the HER based on 2D materials including transition metal disulfides, MXenes, and boron monolayers. Finally, we summarize the challenges and prospects for future development of electrocatalysts for the hydrogen evolution reaction.



Key wordsWater electrolysis      Hydrogen evolution reaction      Two-dimensional materials      Catalyst     
Received: 20 December 2016      Published: 08 February 2017
MSC2000:  O643  
Fund:  National Natural Science Foundation of China(21525311);National Natural Science Foundation of China(21373045);National Natural Science Foundation of China(11404056);National Natural Science of Jiangsu Province, China(BK20130016);Specialized Research Fund for the Doctoral Program of Higher Education, China(20130092110029);Scientific Research Foundation of Graduate School of Southeast University, China(YBJJ1670)
Corresponding Authors: Jin-Lan WANG     E-mail: jlwang@seu.edu.cn
Cite this article:

Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702088     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/869

Fig 1 Schematic diagram of an electrolyzer
Fig 2 Exchange current density j0 as function of free energy of hydrogen adsorption ΔGH for different materials Reprinted with permission from Ref.15. Copyright 2015 John Wiley and Sons.
Fig 3 (a) Structures of nitrogenase and its active site as well as MoS2 Mo-edge; (b) calculated free energy diagram for hydrogen evolution of different materials; exchange current density versus (c) MoS2 area coverage and (d) MoS2 edge length Reprinted with permission from Ref.30. Copyright 2005 American Chemical Society. Reprinted with permission from Ref.27. Copyright 2007 American Association for the Advancement of Science.
Fig 4 Schematic illustration of the synthesis procedure of (a) MoS2 nanosheets, (b) MoS2 quantum dots interspersed in MoS2 nanosheets and (c) defect-free and defect-rich structures MoS2 nanosheets Reprinted with permission from Ref.38. Copyright 2013 American Chemical Society; Reprinted with permission from Ref.44. Copyright 2014 American Chemical Society; Reprinted with permission from Ref.45. Copyright 2013 John Wiley and Sons.
Fig 5 (a) Hopping of electrons in the vertical direction of MoS2 layers; (b) SEM images of MoS2 triangular flakes grown on Au foils as well as their electrocatalytic performance Reprinted with permission from Ref.46. Copyright 2014 American Chemical Society; Reprinted with permission from Ref.47. Copyright 2014 American Chemical Society. color online
Fig 6 Synthesis procedure and structural model for (a) mesoporous MoS2 with a double-gyroid morphology and (b) MoS2@NPG hybrid materials Reprinted with permission from Ref.48. Copyright 2012, Rights Managed by Natrue Publishing Group; Reprinted with permission from Ref.49. Copyright 2014 John Wiley and Sons.
Fig 7 (a) The structure of MoS2 monolayer with S vancancy and the variation of its stabities and catalytic performance under different strain and S vacancy coverage; (b) the structures and HER performance of different kinds of defects on MoS2 Reprinted with permission from ref 52. Copyright 2015, Rights Managed by Natrue Publishing Group; Reprinted with permission from ref 53. Copyright 2016 American Chemical Society.
Fig 8 Synthesis of MoS2 in solution (a, b) with and (c, d) without graphene sheets Reprinted with permission from Ref.55. Copyright 2011 American Chemical Society.
Fig 9 (a) Strucutres and (b) HER activity of 1T and 2H phase MoS2; the effect of the intercalation of different organolithium compounds on the (c) current density and (d) Tafel slope of exfoliated MoS2; the effect of edge oxidation on the (e) current density and (f) Tafel slope of 1T and 2H phase MoS2
Fig 10 (a) Idealized structure of MoSe2 films with the layers aligned perpendicular to the substrate; (b) polarization curves of MoSe2/GC and MoS2/GC; (c) polarization curves of MoSe2/GC and MoSe2/carbon fiber Reprinted with permission from Ref.61. Copyright 2013 American Chemical Society; Reprinted with permission from Ref.62. Copyright 2013 American Chemical Society.
Fig 11 (a) AFM image of 2H phase WS2 nanosheet and the STEM images of (b) 1T phase and (c) 2H phase WS2 nanosheet; (d) polarization curves of different WS2 nanosheets; (d) experimental characterization of WS2 nanosheets and (f) polarization curves of different kinds of MX2 Reprinted with permission from Ref.64. Copyright 2013, Rights Managed by Natrue Publishing Group; Reprinted with permission from Ref.65. Copyright 2014 Royal Society of Chemistry. color online
Material Performance Ref.
Overpotentiala/mV Tafel slope/(mV·dec-1)
MoS2 nanosheet ~200 68 41
defect-rich nanosheet ~200 50 45
mesoporous MoS2 50 48
MoS2@NPG 46 49
MoS2 with S vacancy 170 60 52
Pt doped MoS2 150 96 54
MoS2/RGO 150 41 55
1T MoS2 183 43 57
MoSe2 vertically aligned MoSe2/GC 105-120 61
MoSe2/carbon fiber 250 60 62
MoSe2/3D graphene network 159 61 63
WS2 strained 1T WS2 250 60 64
1T WS2 142 70 65
Table 1 HER performance of different types of MX2 with distinct morphology
Fig 12 (a) Scheme of modulating the preformance of V2CO2 by introducing transition metal promoter; (b) calculated ΔGH of V2CO2 with the promotion of different metals and metal coverages Reprinted with permission from Ref.79. Copyright 2016 John Wiley and Sons.
Fig 13 HER catalytic activity of (a) Ti2CTx, Mo2CTx and Mo2CTx with different (b) mass loadings and (c) structures Reprinted with permission from Ref.80. Copyright 2016 American Chemical Society.
Fig 14 (a) Calculated ΔEH and |ΔGH| as a function of number of electron O atom gains (Ne); the calculated Ne of (b) WMoCO2, (c) TiVCO2, (d) ZrVCO2, (e) NbVCO2, (f) HfVCO2, (g) TaVCO2 and (h) WCrCO2, where the shaded areas describe the optimal value range of Ne for HER; (i) the ΔGH as a function of electron number of transition-metal doped MoS2 edge S atom Reprinted with permission from Ref.81. Copyright 2016 American Chemical Society.
Fig 15 Structures of (a) β12, (b) χ3 and (c) trigonal BM, respectively, as well as (d) the calculated ΔGH Reprinted with permission from Ref.86. Copyright 2016 Royal Society of Chemistry.
Fig 16 (a) Structures and (b) calculated ΔGH of α1 and β1 BMs Reprinted with permission from Ref.86. Copyright 2016 Royal Society of Chemistry.
1 Lubitz W. ; Tumas W. Chem. Rev. 2007, 107, 3900d.
2 Nenoff T. M. ; Berman M. R. ; Glasgow K. C. ; Cesa M. C. ; Taft H. Ind. Eng. Chem. Res. 2012, 51, 11819.
3 Momirlan M. ; Veziroglu T. N. Int. J.Hydrog. Energy 2005, 30, 795.
4 Chu S. ; Majumdar A. Nature 2012, 488, 294.
5 Dresselhaus M. ; Thomas I. Nature 2001, 414, 332d.
6 Turner J. A. Science 2004, 305, 972.
7 Barber J. H. ; Conway B. E. J. Electroanal. Chem. 1999, 461, 80.
8 Schmidt T. J. ; Ross P. N. ; Markovic N. M. J. Electroanal. Chem. 2002, 524, 252.
9 Grigoriev S. A. ; Millet P. ; Fateev V. N. J. Power Sources 2008, 177, 281.
10 Skulason E. ; Karlberg G. S. ; Rossmeisl J. ; Bligaard T. ; Greeley J. ; Jonsson H. ; Norskov J. K. Phys. Chem. Chem. Phys. 2007, 9, 3241.
11 Yang T. H. ; Pyun S. I. J. Electroanal. Chem. 1996, 414, 127d.
12 Vesborg P. C. ; Seger B. ; Chorkendorff I. J Phys. Chem. Lett. 2015, 6, 951.
13 Lu Q. ; Yu Y. ; Ma Q. ; Chen B. ; Zhang H. Adv. Mater. 2015, 28, 1917.
14 Zou X. ; Zhang Y. Chem. Soc. Rev. 2015, 44, 5148d.
15 Zheng Y. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed. 2015, 54, 52.
16 Cheng Y. ; Jiang S. P. Prog. Nat. Sci. 2015, 25, 545d.
17 Gong M. ; Dai H. J. Nano Res. 2015, 8, 23.
18 Surendranath, Y.; Nocera, D. G. Oxygen Evolution ReactionChemistry of Oxide-Based Electrodes. In Progress in InorganicChemistry, Vol. 57, Karlin, K. D. Ed. 2012; Vol. 57, p 505.
19 Tang Q. ; Zhou Z. ; Chen Z. Wiley Interdisciplinary Reviews: Computational Molecular Science 2015, 5, 360.
20 Tang Q. ; Zhou Z. Progress in Materials Science 2013, 58, 1244.
21 Chia X. ; Eng A. Y. ; Ambrosi A. ; Tan S. M. ; Pumera M. Chem. Rev. 2015, 115, 11941.
22 Lasia A. Handbook of Fuel Cells 2010.
23 Conway B. ; Tilak B. Electrochim. Acta 2002, 47, 3571d.
24 Bockris J. M. ; Potter E. J. Electrochem. Soc. 1952, 99, 169d.
25 Zheng Y. ; Jiao Y. ; Zhu Y. ; Li L. H. ; Han Y. ; Chen Y. ; Du A. ; Jaroniec M. ; Qiao S. Z. Nat. Commun. 2014, 5, 3783d.
26 N?rskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. R. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152, J23.
27 Jaramillo T. F. ; J?rgensen K. P. ; Bonde J. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. Science 2007, 317, 100d.
28 Greeley J. ; N?rskov J. K. ; Kibler L. A. ; El-Aziz A. M. ; Kolb D. M. Chem Phys Chem 2006, 7, 1032.
29 Sholl, D. S.; Steckel, J. A. DFT Calculations of Vibrational Frequencies. In Density Functional Theory, JohnWiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p 113.
30 Hinnemann B. ; Moses P. G. ; Bonde J. ; J?rgensen K. P. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. ; N?rskov J. K. J. Am. Chem. Soc. 2005, 127, 5308.
31 Tributsch H. Berichte der Bunsengesellschaft für Physikalische Chemie 1977, 81, 361.
32 Tributsch H. ; Bennett J. J. Electroanal. Chem. 1977, 81, 97d.
33 Karunadasa H. I. ; Montalvo E. ; Sun Y. ; Majda M. ; Long J.R. ; Chang C. J. Science 2012, 335, 698.
34 Jaramillo T. F. ; Bonde J. ; Zhang J. ; Ooi B. L. ; Andersson K. ; Ulstrup J. ; Chorkendorff I. J. Phys. Chem. C 2008, 112, 17492d.
35 Kibsgaard J. ; Jaramillo T. F. ; Besenbacher F. Nat. Chem. 2014, 6, 248.
36 Lau V.W. H. ; Masters A. F. ; Bond A. M. ; Maschmeyer T. Chem.-Eur. J. 2012, 18, 8230.
37 Lau V.W. H. ; Masters A. F. ; Bond A. M. ; Maschmeyer T. ChemCatChem 2011, 3, 1739.
38 Wang T. ; Gao D. ; Zhuo J. ; Zhu Z. ; Papakonstantinou P. ; Li Y. ; Li M. Chem. Eur. J. 2013, 19, 11939.
39 Zhang L. ; Wu H. B. ; Yan Y. ; Wang X. ; Lou X.W. D. Energy Environ. Sci. 2014, 7, 3302.
40 Benck J. D. ; Hellstern T. R. ; Kibsgaard J. ; Chakthranont P. ; Jaramillo T. F. ACS Catal. 2014, 4, 3957.
41 Wu Z. ; Fang B. ; Wang Z. ; Wang C. ; Liu Z. ; Liu F. ; Wang W. ; Alfantazi A. ; Wang D. ; Wilkinson D. P. ACS Catal. 2013, 3, 2101.
42 Chia X. ; Ambrosi A. ; Sedmidubsky D. ; Sofer Z. ; Pumera M. Chem.-Eur. J. 2014, 20, 17426.
43 Wang D. ; Wang Z. ; Wang C. ; Zhou P. ; Wu Z. ; Liu Z. Electrochem. Commun. 2013, 34, 219.
44 Gopalakrishnan D. ; Damien D. ; Shaijumon M. M. ACS Nano 2014, 8, 5297.
45 Xie J. ; Zhang H. ; Li S. ; Wang R. ; Sun X. ; Zhou M. ; Zhou J. ; Lou X.W. ; Xie Y. Adv. Mater. 2013, 25, 5807.
46 Yu Y. ; Huang S. Y. ; Li Y. ; Steinmann S. N. ; Yang W. ; Cao L. Nano Lett. 2014, 14, 553.
47 Shi J. ; Ma D. ; Han G. F. ; Zhang Y. ; Ji Q. ; Gao T. ; Sun J. ; Song X. ; Li C. ; Zhang Y. ACS Nano 2014, 8, 10196d.
48 Kibsgaard J. ; Chen Z. ; Reinecke B. N. ; Jaramillo T. F. Nat. Mater. 2012, 11, 963.
49 Tan Y. ; Liu P. ; Chen L. ; Cong W. ; Ito Y. ; Han J. ; Guo X. ; Tang Z. ; Fujita T. ; Hirata A. ; Chen M. W. Adv. Mater. 2014, 26, 8023.
50 Lu Z. ; Zhang H. ; Zhu W. ; Yu X. ; Kuang Y. ; Chang Z. ; Lei X. ; Sun X. Chem. Commun. 2013, 49, 7516.
51 Yang Y. ; Fei H. ; Ruan G. ; Xiang C. ; Tour J. M. Adv. Mater. 2014, 26, 8163.
52 Li H. ; Tsai C. ; Koh A. L. ; Cai L. ; Contryman A.W. ; Fragapane A. H. ; Zhao J. ; Han H. S. ; Manoharan H. C. ; Abild-Pedersen F. Nat. Mater. 2015, 15, 48.
53 Ouyang Y. ; Ling C. ; Chen Q. ; Wang Z. ; Shi L. ; Wang J. Chem. Mater. 2016, 28, 4390.
54 Deng J. ; Li H. ; Xiao J. ; Tu Y. ; Deng D. ; Yang H. ; Tian H. ; Li J. ; Ren P. ; Bao X. Energy Environ. Sci. 2015, 8, 1594d.
55 Li Y. ; Wang H. ; Xie L. ; Liang Y. ; Hong G. ; Dai H. J. Am. Chem. Soc. 2011, 133, 7296.
56 Tsai C. ; Abild-Pedersen F. ; N?rskov J. K. Nano Lett. 2014, 14, 1381.
57 Lukowski M. A. ; Daniel A. S. ; Meng F. ; Forticaux A. ; Li L. ; Jin S. J. Am. Chem. Soc. 2013, 135, 10274.
58 Ambrosi A. ; Sofer Z. ; Pumera M. Small 2015, 11, 605d.
59 Voiry D. ; Salehi M. ; Silva R. ; Fujita T. ; Chen M. ; Asefa T. ; Shenoy V. B. ; Eda G. ; Chhowalla M. Nano Lett. 2013, 13, 6222.
60 Tang Q. ; Jiang D. E. ACS Catal 2016, 6, 4953.
61 Kong D. ; Wang H. ; Cha J. J. ; Pasta M. ; Koski K. J. ; Yao J. ; Cui Y. Nano Lett. 2013, 13, 1341.
62 Wang H. ; Kong D. ; Johanes P. ; Cha J. J. ; Zheng G. ; Yan K. ; Liu N. ; Cui Y. Nano Lett. 2013, 13, 3426.
63 Mao S. ; Wen Z. ; Ci S. ; Guo X. ; Ostrikov K. K. ; Chen J. Small 2015, 11, 414.
64 Voiry D. ; Yamaguchi H. ; Li J. ; Silva R. ; Alves D. C. ; Fujita T. ; Chen M. ; Asefa T. ; Shenoy V. B. ; Eda G. ; Chhowalla M. Nat. Mater. 2013, 12, 850.
65 Lukowski M. A. ; Daniel A. S. ; English C. R. ; Meng F. ; Forticaux A. ; Hamers R. J. ; Jin S. Energy Environ. Sci. 2014, 7, 2608.
66 Naguib M. ; Kurtoglu M. ; Presser V. ; Lu J. ; Niu J. ; Heon M. ; Hultman L. ; Gogotsi Y. ; Barsoum M.W. Adv. Mater. 2011, 23, 4248.
67 Naguib M. ; Mashtalir O. ; Carle J. ; Presser V. ; Lu J. ; Hultman L. ; Gogotsi Y. ; Barsoum M.W. ACS Nano 2012, 6, 1322.
68 Naguib M. ; Mochalin V. N. ; Barsoum M.W. ; Gogotsi Y. Adv. Mater. 2014, 26, 992.
69 Anasori B. ; Xie Y. ; Beidaghi M. ; Lu J. ; Hosler B. C. ; Hultman L. ; Kent P. R. C. ; Gogotsi Y. ; Barsoum M.W. ACS Nano 2015, 9, 9507.
70 Naguib M. ; Halim J. ; Lu J. ; Cook K. M. ; Hultman L. ; Gogotsi Y. ; Barsoum M.W. J. Am. Chem. Soc. 2013, 135, 15966.
71 Tang Q. ; Zhou Z. ; Shen P. J. Am. Chem. Soc. 2012, 134, 16909.
72 Xie Y. ; Dall'Agnese Y. ; Naguib M. ; Gogotsi Y. ; Barsoum M.W. ; Zhuang H. L. ; Kent P. R. ACS Nano 2014, 8, 9606d.
73 Xie Y. ; Naguib M. ; Mochalin V. N. ; Barsoum M.W. ; Gogotsi Y. ; Yu X. ; Nam K.W. ; Yang X. Q. ; Kolesnikov A. I. ; Kent P.R. J. Am. Chem. Soc. 2014, 136, 6385.
74 Rakhi R. ; Ahmed B. ; Hedhili M. ; Anjum D. H. ; Alshareef H.N. Chem. Mater. 2015, 27, 5314.
75 Hu Q. ; Sun D. ; Wu Q. ; Wang H. ; Wang L. ; Liu B. ; Zhou A. ; He J. J. Phys. Chem. A 2013, 117, 14253.
76 Hu Q. ; Wang H. ; Wu Q. ; Ye X. ; Zhou A. ; Sun D. ; Wang L. ; Liu B. ; He J. Int. J.Hydrog. Energy 2014, 39, 10606d.
77 Khazaei M. ; Arai M. ; Sasaki T. ; Chung C. Y. ; Venkataramanan N. S. ; Estili M. ; Sakka Y. ; Kawazoe Y. Adv. Funct. Mater. 2013, 23, 2185.
78 Lei J. C. ; Zhang X. ; Zhou Z. Frontiers of Physics 2015, 10, 276.
79 Ling C. ; Shi L. ; Ouyang Y. ; Chen Q. ; Wang J. Adv. Sci. 2016, 3, 1600180.
80 Seh Z.W. ; Fredrickson K. D. ; Anasori B. ; Kibsgaard J. ; Strickler A. L. ; Lukatskaya M. R. ; Gogotsi Y. ; Jaramillo T. F. ; Vojvodic A. ACS Energy Letters 2016, 1, 589.
81 Ling C. ; Shi L. ; Ouyang Y. ; Wang J. Chem. Mater. 2016, 28, 9026.
82 Tang H. ; Ismail-Beigi S. Phys. Rev. Lett. 2007, 99, 115501d.
83 Wu X. ; Dai J. ; Zhao Y. ; Zhuo Z. ; Yang J. ; Zeng X. C. ACS Nano 2012, 6, 7443.
84 Feng B. ; Zhang J. ; Zhong Q. ; Li W. ; Li S. ; Li H. ; Cheng P. ; Meng S. ; Chen L. ; Wu K. Nat. Chem. 2016, 8, 563d.
85 Mannix A. J. ; Zhou X. F. ; Kiraly B. ; Wood J. D. ; Alducin D. ; Myers B. D. ; Liu X. ; Fisher B. L. ; Santiago U. ; Guest J. R. Science 2015, 350, 1513.
86 Shi L. ; Ling C. ; Ouyang Y. ; Wang J. Nanoscale 2017, 9, 533d.
[1] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[2] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[3] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1672-1680.
[4] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1681-1688.
[5] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[6] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.
[7] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1242-1252.
[8] Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1123-1129.
[9] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1017-1026.
[10] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[11] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 602-610.
[12] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[13] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 270-282.
[14] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[15] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.