Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 869-885    DOI: 10.3866/PKU.WHXB201702088
REVIEW     
Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials
LING Chong-Yi, WANG Jin-Lan
Department of Physics, Southeast University, Nanjing 211189, P. R. China
Download:   PDF(8460KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hydrogen produced from electrochemical water-splitting driven by renewable resource-derived electricity is considered a promising candidate for clean energy. However, sustainable hydrogen production from water splitting requires highly active catalysts to make the process efficient. Catalysts based on graphene-like two-dimensional (2D) materials present great potential in the hydrogen evolution reaction (HER) and thus gain attention. In this review, which is a combination of our recent works, we highlight research efforts towards electrocatalysts for the HER based on 2D materials including transition metal disulfides, MXenes, and boron monolayers. Finally, we summarize the challenges and prospects for future development of electrocatalysts for the hydrogen evolution reaction.



Key wordsWater electrolysis      Hydrogen evolution reaction      Two-dimensional materials      Catalyst     
Received: 20 December 2016      Published: 08 February 2017
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21525311, 21373045, 11404056), National Natural Science of Jiangsu Province, China (BK20130016), Specialized Research Fund for the Doctoral Program of Higher Education, China (20130092110029), and Scientific Research Foundation of Graduate School of Southeast University, China (YBJJ1670).

Corresponding Authors: WANG Jin-Lan     E-mail: jlwang@seu.edu.cn
Cite this article:

LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201702088     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I5/869

(1) Lubitz, W.; Tumas, W. Chem. Rev. 2007, 107, 3900.doi: 10.1021/cr050200z
(2) Nenoff, T. M.; Berman, M. R.; Glasgow, K. C.; Cesa, M. C.; Taft, H. Ind. Eng. Chem. Res. 2012, 51, 11819. doi: 10.1021/ie301555t
(3) Momirlan, M.; Veziroglu, T. N. Int. J. Hydrog. Energy 2005, 30, 795. doi: 10.1016/j.ijhydene.2004.10.011
(4) Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475
(5) Dresselhaus, M.; Thomas, I. Nature 2001, 414, 332.doi: 10.1038/35104599
(6) Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197
(7) Barber, J. H.; Conway, B. E. J. Electroanal. Chem. 1999, 461, 80. doi: 10.1016/s0022-0728(98)00161-2
(8) Schmidt, T. J.; Ross, P. N.; Markovic, N. M. J. Electroanal.Chem. 2002, 524, 252. doi: 10.1016/s0022-0728(02)00683-6
(9) Grigoriev, S. A.; Millet, P.; Fateev, V. N. J. Power Sources 2008, 177, 281. doi: 10.1016/j.jpowsour.2007.11.072
(10) Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.; Norskov, J. K. Phys. Chem. Chem.Phys. 2007, 9, 3241. doi: 10.1039/b700099e
(11) Yang, T. H.; Pyun, S. I. J. Electroanal. Chem. 1996, 414, 127.doi: 10.1016/s0022-0728(96)04666-9
(12) Vesborg, P. C.; Seger, B.; Chorkendorff, I. J Phys. Chem. Lett. 2015, 6, 951. doi: 10.1021/acs.jpclett.5b00306
(13) Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2015, 28, 1917. doi: 10.1002/adma.201503270
(14) Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.doi: 10.1039/C4CS00448E
(15) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int.Ed. 2015, 54, 52. doi: 10.1002/anie.201407031
(16) Cheng, Y.; Jiang, S. P. Prog. Nat. Sci. 2015, 25, 545.doi: 10.1016/j.pnsc.2015.11.008
(17) Gong, M.; Dai, H. J. Nano Res. 2015, 8, 23. doi: 10.1007/s12274-014-0591-z
(18) Surendranath, Y.; Nocera, D. G. Oxygen Evolution ReactionChemistry of Oxide-Based Electrodes. In Progress in InorganicChemistry, Vol. 57, Karlin, K. D. Ed. 2012; Vol. 57, p 505.
(19) Tang, Q.; Zhou, Z.; Chen, Z. Wiley Interdisciplinary Reviews:Computational Molecular Science 2015, 5, 360. doi: 10.1002/wcms.1224
(20) Tang, Q.; Zhou, Z. Progress in Materials Science 2013, 58, 1244. doi: 10.1016/j.pmatsci.2013.04.003
(21) Chia, X.; Eng, A. Y.; Ambrosi, A.; Tan, S. M.; Pumera, M.Chem. Rev. 2015, 115, 11941. doi: 10.1021/acs.chemrev.5b00287
(22) Lasia, A. Handbook of Fuel Cells 2010. doi: 10.1002/9780470974001.f204033
(23) Conway, B.; Tilak, B. Electrochim. Acta 2002, 47, 3571.doi: 10.1016/S0013-4686(02)00329-8
(24) Bockris, J. M.; Potter, E. J. Electrochem. Soc. 1952, 99, 169.doi: 10.1149/1.2779692
(25) Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Z. Nat. Commun. 2014, 5, 3783.doi: 10.1038/ncomms4783
(26) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, J23. doi: 10.1149/1.1856988
(27) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.doi: 10.1126/science.1141483
(28) Greeley, J.; Nørskov, J. K.; Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. ChemPhysChem 2006, 7, 1032. doi: 10.1002/cphc.200500663
(29) Sholl, D. S.; Steckel, J. A. DFT Calculations of VibrationalFrequencies. In Density Functional Theory, JohnWiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p 113.
(30) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am.Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
(31) Tributsch, H. Berichte der Bunsengesellschaft für PhysikalischeChemie 1977, 81, 361. doi: 10.1002/bbpc.19770810403
(32) Tributsch, H.; Bennett, J. J. Electroanal. Chem. 1977, 81, 97.doi: 10.1016/S0022-0728(77)80363-X
(33) Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J.R.; Chang, C. J. Science 2012, 335, 698. doi: 10.1126/science.1215868
(34) Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B. L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I. J. Phys. Chem. C 2008, 112, 17492.doi: 10.1021/jp802695e
(35) Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Nat. Chem. 2014, 6, 248. doi: 10.1038/nchem.1853
(36) Lau, V.W. H.; Masters, A. F.; Bond, A. M.; Maschmeyer, T.Chem. -Eur. J. 2012, 18, 8230. doi: 10.1002/chem.201200255
(37) Lau, V.W. H.; Masters, A. F.; Bond, A. M.; Maschmeyer, T.ChemCatChem 2011, 3, 1739. doi: 10.1002/cctc.201100212
(38) Wang, T.; Gao, D.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Li, Y.; Li, M. Chem. Eur. J. 2013, 19, 11939. doi: 10.1002/chem.201301406
(39) Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X.W. D. EnergyEnviron. Sci. 2014, 7, 3302. doi: 10.1039/C4EE01932F
(40) Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. ACS Catal. 2014, 4, 3957. doi: 10.1021/cs500923c
(41) Wu, Z.; Fang, B.; Wang, Z.; Wang, C.; Liu, Z.; Liu, F.; Wang, W.; Alfantazi, A.; Wang, D.; Wilkinson, D. P. ACS Catal. 2013, 3, 2101. doi: 10.1021/cs400384h
(42) Chia, X.; Ambrosi, A.; Sedmidubský, D.; Sofer, Z.; Pumera, M.Chem. -Eur. J. 2014, 20, 17426. doi: 10.1002/chem.201404832
(43) Wang, D.; Wang, Z.; Wang, C.; Zhou, P.; Wu, Z.; Liu, Z.Electrochem. Commun. 2013, 34, 219. doi: 10.1016/j.elecom.2013.06.018
(44) Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. ACS Nano 2014, 8, 5297. doi: 10.1021/nn501479e
(45) Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.W.; Xie, Y. Adv. Mater. 2013, 25, 5807. doi: 10.1002/adma.201302685
(46) Yu, Y.; Huang, S. Y.; Li, Y.; Steinmann, S. N.; Yang, W.; Cao, L.Nano Lett. 2014, 14, 553. doi: 10.1021/nl403620g
(47) Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y. ACS Nano 2014, 8, 10196.doi: 10.1021/nn503211t
(48) Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat.Mater. 2012, 11, 963. doi: 10.1038/nmat3439
(49) Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; Chen, M.W. Adv. Mater. 2014, 26, 8023. doi: 10.1002/adma.201403808
(50) Lu, Z.; Zhang, H.; Zhu, W.; Yu, X.; Kuang, Y.; Chang, Z.; Lei, X.; Sun, X. Chem. Commun. 2013, 49, 7516. doi: 10.1039/C3CC44143A
(51) Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Adv. Mater. 2014, 26, 8163. doi: 10.1002/adma.201402847
(52) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A.W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. Nat. Mater. 2015, 15, 48. doi: 10.1038/nmat4465
(53) Ouyang, Y.; Ling, C.; Chen, Q.; Wang, Z.; Shi, L.; Wang, J.Chem. Mater. 2016, 28, 4390. doi: 10.1021/acs.chemmater.6b01395
(54) Deng, J.; Li, H.; Xiao, J.; Tu, Y.; Deng, D.; Yang, H.; Tian, H.; Li, J.; Ren, P.; Bao, X. Energy Environ. Sci. 2015, 8, 1594.doi: 10.1039/C5EE00751H
(55) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am.Chem. Soc. 2011, 133, 7296. doi: 10.1021/ja201269b
(56) Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Nano Lett. 2014, 14, 1381. doi: 10.1021/nl404444k
(57) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc. 2013, 135, 10274. doi: 10.1021/ja404523s
(58) Ambrosi, A.; Sofer, Z.; Pumera, M. Small 2015, 11, 605.doi: 10.1002/smll.201400401
(59) Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nano Lett. 2013, 13, 6222. doi: 10.1021/nl403661s
(60) Tang, Q.; Jiang, D. E. ACS Catal 2016, 6, 4953. doi: 10.1021/acscatal.6b01211
(61) Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Nano Lett. 2013, 13, 1341. doi: 10.1021/nl400258t
(62) Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. Nano Lett. 2013, 13, 3426. doi: 10.1021/nl401944f
(63) Mao, S.; Wen, Z.; Ci, S.; Guo, X.; Ostrikov, K. K.; Chen, J.Small 2015, 11, 414. doi: 10.1002/smll.201401598
(64) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M.Nat. Mater. 2013, 12, 850. doi: 10.1038/nmat3700
(65) Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Energy Environ. Sci. 2014, 7, 2608. doi: 10.1039/c4ee01329h
(66) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
(67) Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h
(68) Naguib, M.; Mochalin, V. N.; Barsoum, M.W.; Gogotsi, Y. Adv.Mater. 2014, 26, 992. doi: 10.1002/adma.201304138
(69) Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M.W. ACSNano 2015, 9, 9507. doi: 10.1021/acsnano.5b03591
(70) Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. J. Am. Chem. Soc. 2013, 135, 15966. doi: 10.1021/ja405735d
(71) Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r
(72) Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H. L.; Kent, P. R. ACS Nano 2014, 8, 9606.doi: 10.1021/nn503921j
(73) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P.R. J. Am. Chem. Soc. 2014, 136, 6385. doi: 10.1021/ja501520b
(74) Rakhi, R.; Ahmed, B.; Hedhili, M.; Anjum, D. H.; Alshareef, H.N. Chem. Mater. 2015, 27, 5314. doi: 10.1021/acs.chemmater.5b01623
(75) Hu, Q.; Sun, D.; Wu, Q.; Wang, H.; Wang, L.; Liu, B.; Zhou, A.; He, J. J. Phys. Chem. A 2013, 117, 14253. doi: 10.1021/jp409585v
(76) Hu, Q.; Wang, H.; Wu, Q.; Ye, X.; Zhou, A.; Sun, D.; Wang, L.; Liu, B.; He, J. Int. J. Hydrog. Energy 2014, 39, 10606.doi: 10.1016/j.ijhydene.2014.05.037
(77) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Adv.Funct. Mater. 2013, 23, 2185. doi: 10.1002/adfm.201202502
(78) Lei, J. C.; Zhang, X.; Zhou, Z. Frontiers of Physics 2015, 10, 276. doi: 10.1007/s11467-015-0493-x
(79) Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3, 1600180. doi: 10.1002/advs.201600180
(80) Seh, Z.W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Letters 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247
(81) Ling, C.; Shi, L.; Ouyang, Y.; Wang, J. Chem. Mater. 2016, 28, 9026. doi: 10.1021/acs.chemmater.6b03972
(82) Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501.doi: 10.1103/PhysRevLett.99.115501
(83) Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C. ACSNano 2012, 6, 7443. doi: 10.1021/nn302696v
(84) Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem. 2016, 8, 563.doi: 10.1038/nchem.2491
(85) Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.Science 2015, 350, 1513. doi: 10.1126/science.aad1080
(86) Shi, L.; Ling, C.; Ouyang, Y.; Wang, J. Nanoscale 2017, 9, 533.doi: 10.1039/C6NR06621F

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[3] LIAO Pei-Yi, ZHANG Chen, ZHANG Li-Jun, YANG Yan-Zhang, ZHONG Liang-Shu, GUO Xiao-Ya, WANG Hui, SUN Yu-Han. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[4] HU Ling-Xiao, WANG Lian, WANG Fei, ZHANG Chang-Bin, HE Hong. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[5] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[6] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[7] HUANG Yu-Fen, ZHANG Hai-Long, YANG Zheng-Zheng, ZHAO Ming, HUANG Mu-Lan, LIANG Yan-Li, WANG Jian-Li, CHEN Yao-Qiang. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[8] SUN Shuai-Qi, YI Yan-Hui, WANG Li, ZHANG Jia-Liang, GUO Hong-Chen. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.
[9] HU Yi-Hao, SONG Tong-Yang, WANG Yue-Juan, HU Geng-Sheng, XIE Guan-Qun, LUO Meng-Fei. Gas Phase Dehydrochlorination of 1,1,2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[10] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[11] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[12] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[13] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[14] BAI Xiao-Fang, CHEN Wei, WANG Bai-Yin, FENG Guang-Hui, WEI Wei, JIAO Zheng, SUN Yu-Han. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.
[15] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.