Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(5)>> 903-917     doi: 10.3866/PKU.WHXB201702091         中文摘要
Recent Research Advancements in NO-Releasing Nanomaterials
XIANG Hui-Jing1,2, LIU Jin-Gang2, ZHAO Yanli1
1 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371;
2 Key Laboratory for Advanced Materials of MOE, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
Full text: PDF (1495KB) Export: BibTeX | EndNote (RIS)

Nitric oxide (NO)—an endogenous diatomic molecule—plays key roles in various physiological and pathological processes, including smooth muscle relaxation in blood vessels, immune response, neurotransmission, respiration, and cell apoptosis. The biological functions of this molecule greatly depend on the location, timing, and dosage at which it is released. It is important to develop NO-delivery platforms capable of holding NO stably during storage and subsequently release optimal amounts of NO spatiotemporally at the desired location and time. In this review, recent advancements in the preparation of new exogenous NO donors including diazeniumdiolates, S-nitrosothiols, nitrobenzene, and metal-nitrosyl complexes are discussed. The integration of these NO donors with various nanoplatforms for controlled NO delivery and their potential applications in the biomedical field are highlighted.



Keywords: Controlled release   Nanomedicine   Nitric oxide   Nitric oxide delivery nanoplatform   Nitric oxide donor  
Received: 2016-12-01 Accepted: 2017-02-03 Publication Date (Web): 2017-02-09
Corresponding Authors: LIU Jin-Gang, ZHAO Yanli Email: liujingang@ecust.edu.cn;zhaoyanli@ntu.edu.sg

Fund: The project was supported by the Singapore Academic Research Fund (RG112/15), NTU-Northwestern Institute for Nanomedicine, and National Natural Science Foundation of China (21571062).

Cite this article: XIANG Hui-Jing, LIU Jin-Gang, ZHAO Yanli. Recent Research Advancements in NO-Releasing Nanomaterials[J]. Acta Phys. -Chim. Sin., 2017,33 (5): 903-917.    doi: 10.3866/PKU.WHXB201702091

(1) Ignarro, L. J. Nitric Oxide: Biology and Pathobiology; Academic Press: San Diego, CA, 2000.
(2) Butler, A. R.; Nicholson, R. Life, Death and Nitric Oxide;Royal Society of Chemistry: Cambridge, 2003.
(3) Mann, B. E.; Motterlinib, R. Chem. Commun. 2007, 4197.doi: 10.1039/B704873D
(4) Fajardo, A. M.; Piazza, G. A.; Tinsley, H. N. Cancers 2014, 6, 436. doi: 10.3390/cancers6010436
(5) Garthwaite, J. Trends Neurosci. 1991, 14, 60. doi: 10.1016/0166-2236(93)90109-Y
(6) Xiang, H. J.; Guo, M.; Liu, J. G. Eur. J. Inorg. Chem. 2017, 1586. doi: 10.1002/ejic.201601135
(7) Feil, R.; Harper, K. B. EMBO Rep. 2006, 7, 149. doi: 10.1038/sj.embor.7400627
(8) Friebe, A.; Koesling, D. Circ. Res. 2003, 93, 96. doi: 10.1161/01.RES.0000082524.34487.31
(9) Sehemy, A. E.; Postovita, L. M.; Fu, Y. X. Nitric Oxide 2016, 54, 30. doi: 10.1016/j.niox.2016.02.002
(10) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091. doi: 10.1021/cr000040l
(11) Ostrowski, A. D.; Ford, P. C. Dalton Trans. 2009, 10660.doi: 10.1039/B912898K
(12) Ford, P. C. Nitric Oxide 2013, 34, 56. doi: 10.1016/j.niox.2013.02.001
(13) Ford, P. C. Acc. Chem. Res. 2008, 41, 190. doi: 10.1021/ar700128y
(14) Fry, N. L.; Wei, J.; Mascharak, P. K. Inorg. Chem. 2011, 50, 9045. doi: 10.1021/ic201242d
(15) Fry, N. L.; Mascharak, P. K. Acc. Chem. Res. 2011, 44, 289.doi: 10.1021/ar100155t
(16) Rose, M. J.; Mascharak, P. K. Coord. Chem. Rev. 2008, 252, 2093. doi: 10.1016/j.ccr.2007.11.011
(17) Rose, M. J.; Mascharak, P. K. Curr. Opin. Chem. Biol. 2008, 12, 238. doi: 10.1016/j.cbpa.2008.02.009
(18) Sortino, S. Chem. Soc. Rev. 2010, 39, 2903. doi: 10.1039/B908663N
(19) Sortino, S. J. Mater. Chem. 2012, 22, 301. doi: 10.1039/C1JM13288A
(20) Kim, J.; Saravanakumar, G.; Choi, H.W.; Park, D.; Kim, W. J.J. Mater. Chem. B 2014, 2, 341. doi: 10.1039/C3TB21259A
(21) Nichols, S. P.; Storm, W. L.; Koh, A.; Schoenfisch, M. H. Adv.Drug Deliv. Rev. 2012, 64, 1177. doi: 10.1016/j.addr.2012.03.002
(22) Naghavi, N.; de Mel, A.; Alavijeh, O. S.; Cousins, B. G.; Seifalian, A. M. Small 2013, 9, 22. doi: 10.1002/smll.201200458
(23) Jen, M. C.; Serrano, M. C.; van Lith, R.; Ameer, G. A. Adv.Funct. Mater. 2012, 22, 239. doi: 10.1002/adfm.201101707
(24) Kim, J.; Lee, Y.; Singha, K.; Kim, H.W.; Shin, J. H.; Jo, S.; Han, D. K.; Kim, W. J. Bioconjugate Chem. 2011, 22, 1031.doi: 10.1021/bc100405c
(25) Reynolds, M. M.; Frost, M. C.; Meyerhoff, M. E. Free RadicalBiol. Med. 2004, 37, 926. doi: 10.1016/j.freeradbiomed.2004.06.019
(26) Friedman, A.; Friedman, J. Expert Opin. Drug Delivery 2009, 6, 1113. doi: 10.1517/17425240903196743
(27) Barraud, N.; Kardak, B. G.; Yepuri, N. R.; Howlin, R. P.; Webb, J. S.; Faust, S. N.; Kjelleberg, S.; Rice, S. A.; Kelso, M.J. Angew. Chem. Int. Ed. 2012, 51, 9057. doi: 10.1002/anie.201202414
(28) Sharma, K.; Iyer, A.; Sengupta, K.; Chakrapani, H. Org. Lett. 2013, 15, 2636. doi: 10.1021/ol400884v
(29) Dharmaraja, A. T.; Ravikumar, G.; Chakrapani, H. Org. Lett. 2014, 16, 2610. doi: 10.1021/ol5010643
(30) Gao, J.; Zheng, W.; Zhang, J.; Guan, D.; Yang, Z.; Kongab, D.; Zhao, Q. Chem. Commun. 2013, 49, 9173. doi: 10.1039/C3CC45666H
(31) Riccio, D. A.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3731. doi: 10.1039/C2CS15272J
(32) Ratanatawanate, C.; Chyao, A.; Balkus, K. J., Jr. J. Am. Chem.Soc. 2011, 133, 3492. doi: 10.1021/ja109328a
(33) Harding, J. L.; Reynolds, M. M. J. Am. Chem. Soc. 2012, 134, 3330. doi: 10.1021/ja210771m
(34) Tan, L.; Wan, A.; Li, H. ACS Appl. Mater. Interfaces 2013, 5, 11163. doi: 10.1021/am4034153
(35) Fukuhara, K.; Kurihara, M.; Miyata, N. J. Am. Chem. Soc. 2001, 123, 8662. doi: 10.1021/ja0109038
(36) Suzuki, T.; Nagae, O.; Kato, Y.; Nakagawa, H.; Fukuhara, K.; Miyata, N. J. Am. Chem. Soc. 2005, 127, 11720. doi: 10.1021/ja0512024
(37) Hishikawa, K.; Nakagawa, H.; Furuta, T.; Fukuhara, K.; Tsumoto, H.; Suzuki, T.; Miyata, N. J. Am. Chem. Soc. 2009, 131, 7488. doi: 10.1021/ja8093668
(38) Ieda, N.; Nakagawa, H.; Peng, T.; Yang, D.; Suzuki, T.; Miyata, N. J. Am. Chem. Soc. 2012, 134, 2563. doi: 10.1021/ja206744z
(39) Ieda, N.; Hotta, Y.; Miyata, N.; Kimura, K.; Nakagawa, H.J. Am. Chem. Soc. 2014, 136, 7085. doi: 10.1021/ja5020053
(40) Kitamura, K.; Kawaguchi, M.; Ieda, N.; Miyata, N.; Nakagawa, H. ACS Chem. Biol. 2016, 11, 1271. doi: 10.1021/acschembio.5b00962
(41) Rose, M. J.; Fry, N. L.; Marlow, R.; Hinck, L.; Mascharak, P.K. J. Am. Chem. Soc. 2008, 130, 8834. doi: 10.1021/ja801823f
(42) Fry, N. L.; Heilman, B. J.; Mascharak, P. K. Inorg. Chem. 2011, 50, 317. doi: 10.1021/ic1019873
(43) Xiang, H. J.; An, L.; Tang, W.W.; Yang, S. P.; Liu, J. G. Chem.Commun. 2015, 51, 2555. doi: 10.1039/C4CC09869B
(44) Xiang, H. J.; Deng, Q.; An, L.; Guo, M.; Yang, S. P.; Liu, J. G.Chem. Commun. 2016, 52, 148. doi: 10.1039/C5CC07006F
(45) Xiang, H. J.; Guo, M.; An, L.; Yang, S. P.; Zhang, Q. L.; Liu, J. G. J. Mater. Chem. B 2016, 4, 4667. doi: 10.1039/C6TB00730A
(46) Goyan, R. L.; Cramb, D. T. Photochem. Photobiol. 2000, 72, 821. doi: 10.1562/0031-8655(2000)0720821NITPEO2.0.CO2
(47) Wecksler, S.; Mikhailovsky, A.; Ford, P. C. J. Am. Chem. Soc. 2004, 126, 13566. doi: 10.1021/ja045710+
(48) Conrado, C. L.; Wecksler, S.; Egler, C.; Magde, D.; Ford, P. C.Inorg. Chem. 2004, 43, 5543. doi: 10.1021/ic049459a
(49) Wecksler, S. R.; Mikhailovsky, A.; Korystov, D.; Ford, P. C.J. Am. Chem. Soc. 2006, 128, 3831. doi: 10.1021/ja057977u
(50) Saraiva, J.; M.-Oliveira, S. S.; Cicillini, S. A.; Eloy, J. O.; Marchetti, J. M. J. Drug Delivery 2011, 2011, 936438.doi: 10.1155/2011/936438
(51) Sharma, A.; Sharma, U. S. Int. J. Pharm. 1997, 154, 123.doi: 10.1016/S0378-5173(97)00135-X
(52) Lian, T.; Ho, R. J. J. Pharm. Sci. 2001, 90, 667. doi: 10.1002/jps.1023
(53) Malam, Y.; Loizidou, M.; Seifalian, A. M. Trends Pharmacol.Sci. 2009, 30, 592. doi: 10.1016/j.tips.2009.08.004
(54) Tai, L. A.; Wang, Y. C.; Yang, C. S. Nitric Oxide 2010, 23, 60.doi: 10.1016/j.niox.2010.04.003
(55) Ostrowski, A. D.; Lin, B. F.; Tirrell, M. V.; Ford, P. C. Mol.Pharmaceutics 2012, 9, 2950. doi: 10.1021/mp300139y
(56) Suchyta, D. J.; Schoenfisch, M. H. Mol. Pharmaceutics 2015, 12, 3569. doi: 10.1021/acs.molpharmaceut.5b00248
(57) Nakanishi, K.; Koshiyama, T.; Iba, S.; Ohba, M. Dalton Trans. 2015, 44, 14200. doi: 10.1039/C5DT02352A
(58) Rahman, A.; Padavettan, V. J. Nanomater. 2012, 2012, 132424.doi: 10.1155/2012/132424
(59) Roy, I.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Bergey, E. J.; Oseroff, A. R.; Morgan, J.; Dougherty, T. J.; Prasad, P. N.J. Am. Chem. Soc. 2003, 125, 7860. doi: 10.1021/ja0343095
(60) Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Chem. Eng. Sci. 2006, 61, 1027. doi: 10.1016/j.ces.2005.06.019
(61) Rim, H. P.; Min, K. H.; Lee, H. J.; Jeong, S. Y.; Lee, S. C.Angew. Chem. Int. Ed. 2011, 50, 8853. doi: 10.1002/anie.201101536
(62) Bagwe, R. P.; Yang, C.; Hilliard, L. R.; Tan, W. Langmuir 2004, 20, 8336. doi: 10.1021/la049137j
(63) Swihart, M. T. Curr. Opin. Colloid Interface Sci. 2003, 8, 127.doi: 10.1016/S1359-0294(03)00007-4
(64) Barbe, C.; Bartlett, J.; Kong, L. G.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Adv. Mater. 2004, 16, 1959. doi: 10.1002/adma.200400771
(65) Park, C.; Oh, K.; Lee, S. C.; Kim, C. Angew. Chem. Int. Ed. 2007, 46, 1455. doi: 10.1002/anie.200603404
(66) Zhang, H.; Annich, G. M.; Miskulin, J.; Stankiewicz, K.; Osterholzer, K.; Merz, S. I.; Bartlett, R. H.; Meyerhoff, M. E.J. Am. Chem. Soc. 2003, 125, 5015. doi: 10.1021/ja0291538
(67) Carpenter, A.W.; Slomberg, D. L.; Rao, K. S.; Schoenfisch, M.H. ACS Nano, 2011, 5, 7235. doi: 10.1021/nn202054f
(68) Shin, J. H.; Metzger, S. K.; Schoenfisch, M. H. J. Am. Chem.Soc. 2007, 129, 4612. doi: 10.1021/ja0674338
(69) Carpenter, A.W.; Worley, B. V.; Slomberg, D. L.; Schoenfisch, M. H. Biomacromolecules 2012, 13, 3334. doi: 10.1021/bm301108x
(70) Rahmat, N.; Abdullah, A. Z.; Mohamed, A. R. A. J. Appl. Sci. 2010, 7, 1579. doi: 10.3844/ajassp.2010.1579.1586
(71) Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I.Chem. Soc. Rev. 2012, 41, 2590. doi: 10.1039/C1CS15246G
(72) Lu, Y.; Slomberg, D. L.; Sun, B.; Schoenfisch, M. H. Small 2013, 9, 2189. doi: 10.1002/smll.201201798
(73) Carpenter, A.W.; Reighard, K. P.; Saavedra, J. E.; Schoenfisch, M. H. Biomater. Sci. 2013, 1, 456. doi: 10.1039/C3BM00153A
(74) Choi, H.W.; Kim, J.; Kim, J.; Kim, Y.; Song, H. B.; Kim, J.H.; Kim, K.; Kim, W. J. ACS Nano 2016, 10, 4199.doi: 10.1021/acsnano.5b07483
(75) Heilman, B. J.; St John, J.; Oliver, S. R.; Mascharak, P. K.J. Am. Chem. Soc. 2012, 134, 11573. doi: 10.1021/ja3022736
(76) Frost, M. C.; Meyerhoff, M. E. J. Biomed. Mater. Res., Part A 2005, 72, 409. doi: 10.1002/jbm.a.30275
(77) Riccio, D. A.; Nugent, J. L.; Schoenfisch, M. H. Chem. Mater. 2011, 23, 1727. doi: 10.1021/cm102510q
(78) Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Park, Y.; Kim, S. Adv. Drug Delivery Rev. 2013, 65, 622. doi: 10.1016/j.addr.2012.08.015
(79) Wang, L. S.; Chuang, M. C.; Ho, J. A. Int. J. Nanomed. 2012, 7, 4679. doi: 10.2147/IJN.S33065
(80) Pinaud, F.; Michalet, X.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Iyer, G.; Weiss, S. Biomaterials 2006, 27, 1679.doi: 10.1016/j.biomaterials.2005.11.018
(81) Zrazhevskiy, P.; Sena, M.; Gao, X. Chem. Soc. Rev. 2010, 39, 4326. doi: 10.1039/B915139G
(82) Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Materials 2010, 3, 2260. doi: 10.3390/ma3042260
(83) Neuman, D.; Ostrowski, A. D.; Absalonson, R. O.; Strouse, G.F.; Ford, P. C. J. Am. Chem. Soc. 2007, 129, 4146. doi: 10.1021/ja070490w
(84) Neuman, D., Ostrowski, A. D.; Mikhailovsky, A. A.; Absalonson, R. O.; Strouse, G. F.; Ford, P. C. J. Am. Chem.Soc. 2008, 130, 168. doi: 10.1021/ja074164s
(85) Burks, P. T.; Ostrowski, A. D.; Mikhailovsky, A. A.; Chan, E.M.; Wagenknecht, P. S.; Ford, P. C. J. Am. Chem. Soc. 2012, 134, 13266. doi: 10.1021/ja300771w
(86) Tan, L.; Wan, A.; Zhu, X.; Li, H. Chem. Commun. 2014, 50, 5725. doi: 10.1039/C4CC01126K
(87) Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363.doi: 10.1002/adfm.201302133
(88) Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Adv. Mater. 2013, 25, 3758. doi: 10.1002/adma.201301197
(89) Garcia, J. V.; Yang, J.; Shen, D.; Yao, C.; Li, X.; Wang, R.; Stucky, G. D.; Zhao, D.; Ford, P. C.; Zhang, F. Small 2012, 8, 3800. doi: 10.1002/smll.201201213
(90) Burks, P. T.; Garcia, J. V.; GonzalezIrias, R.; Tillman, J. T.; Niu, M.; Mikhailovsky, A. A.; Zhang, J.; Zhang, F.; Ford, P. C.J. Am. Chem. Soc. 2013, 135, 18145. doi: 10.1021/ja408516w
(91) Dong, K.; Ju, E.; Gao, N.; Wang, Z.; Ren, J.; Qu, X. Chem.Commun. 2016, 52, 5312. doi: 10.1039/C6CC00774K
(92) Fan, W.; Bu, W.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q.; Ni, D.; Cui, Z.; Zhao, K.; Bu, J.; Du, J.; Liu, J.; Shi, J. Angew.Chem. Int. Ed. 2015, 127, 14026. doi: 10.1002/anie.201504536
(93) Zhang, X.; Tian, G.; Yin, W.; Wang, L.; Zheng, X.; Yan, L.; Li, J.; Su, H.; Chen, C.; Gu, Z.; Zhao, Y. Adv. Funct. Mater. 2015, 25, 3049. doi: 10.1002/adfm.201404402
(94) Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008, 37, 2328. doi: 10.1039/B719085A
(95) Dohnalek, Z.; Lyubinetsky, I.; Rousseau, R. Prog. Surf. Sci. 2010, 85, 161. doi: 10.1016/j.progsurf.2010.03.001
(96) Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.Angew. Chem. Int. Ed. 2012, 51, 2727. doi: 10.1002/anie.201108076
(97) Yin, Z. F.; Wu, L.; Yang, H. G.; Su, Y. H. Phys. Chem. Chem.Phys. 2013, 15, 4844. doi: 10.1039/C3CP43938K
(98) Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; Cui, D.; Chen, X. Adv.Mater. 2012, 24, 5104. doi: 10.1002/adma.201200650
(99) Wang, X.; Cao, L.; Yang, S. T.; Lu, F.; Meziani, M. J.; Tian, L.; Sun, K.W.; Bloodgood, M. A.; Sun, Y. P. Angew. Chem. Int.Ed. 2010, 49, 5310. doi: 10.1002/anie.201000982
(100) Yang, X. D.; Xiang, H. J.; An, L.; Yang, S. P.; Liu, J. G. New J.Chem. 2015, 39, 800. doi: 10.1039/C4NJ01758G
(101) Xu, J.; Zeng, F.; Wu, H.; Hu, C.; Yu, C.; Wu, S. Small 2014, 10, 3750. doi: 10.1002/smll.201400437
(102) Fowley, C.; McHale, A. P.; McCaughan, B.; Fraix, A.; Sortino, S.; Callan, J. F. Chem. Commun. 2015, 51, 81. doi: 10.1039/C4CC07827F
(103) Deng, Q.; Xiang, H. J.; Tang, W.W.; An, L.; Yang, S. P.; Zhang, Q. L.; Liu, J. G. J. Inorg. Biochem. 2016, 165, 152. doi: 10.1016/j.jinorgbio.2016.06.011
(104) Zhang, H.; Gruner, G.; Zhao, Y. J. Mater. Chem. B 2013, 1, 2542. doi: 10.1039/C3TB20405G
(105) Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.; Mahmoudi, M. Chem. Rev. 2013, 113, 3407.doi: 10.1021/cr300335p
(106) Liu, J.; Cui, L.; Losic, D. Acta Biomater. 2013, 9, 9243.doi: 10.1016/j.actbio.2013.08.016
(107) Fan, J.; He, N.; He, Q.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y.; Huang, P.; Chen, X. Nanoscale 2015, 7, 20055. doi: 10.1039/C5NR06630A
(108) Marino, N.; Petralia, S.; Lloret, M. P.; Mosinger, J.; Conoci, S.; Sortino, S. J. Mater. Chem. B 2016, 4, 5825. doi: 10.1039/C6TB01599A

1. LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong.Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Phys. -Chim. Sin., 2015,31(12): 2366-2374
2. ZHU Li-Ying, YAN Xiao-Qin, ZHANG Hong-Man, LIN Dong-Qiang, YAO Shan-Jing, JIANG Ling.Determination of Apparent Drug Permeability Coefficients through Chitosan-Sodium Cellulose Sulfate Polyelectrolyte Complex Films[J]. Acta Phys. -Chim. Sin., 2014,30(2): 365-370
3. XU Wen-Qing, ZHAO Jun, WANG Hai-Rui, ZHU Ting-Yu, LI Peng, JING Peng-Fei.Catalytic Oxidation Activity of NO on TiO2-Supported Mn-Co Composite Oxide Catalysts[J]. Acta Phys. -Chim. Sin., 2013,29(02): 385-390
4. XIE Xiu-Juan, CHEN Wen-Kai, SUN Bao-Zhen, GUO Xin, ZHANG Yong-Fan.Adsorption Behavior of NO on Cu3Pt(111) Surface[J]. Acta Phys. -Chim. Sin., 2010,26(11): 3047-3051
5. LI Tao, LV Rong, YU An-Chi.Recombination Process between Myoglobin and NO Studied by Time-Resolved Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2010,26(01): 18-22
6. LIU Tian-Qing.Effects of Triton X-100 on Properties of Hemoglobin and Controlled Release of Drug in Hemoglobin/Ribavirin/H2O System[J]. Acta Phys. -Chim. Sin., 2008,24(04): 625-632
7. Bao De-Cai;Zhang Qiong-Gang;Liu Xiu-Dong;Ma Xiao-Jun;Yuan Quan.Preparation of VE Microcapsules and Its Controlled Release Characteristics[J]. Acta Phys. -Chim. Sin., 2004,20(02): 178-181
8. Chen Li-Tao, Chen Guang-Ju, Fu Xiao-Yuan.AM1 Studies of Two Pathways of Vinylacetylene React with Nitric Oxide[J]. Acta Phys. -Chim. Sin., 1998,14(11): 1001-1006
9. Pang Xian-Yong,Feng Wen-Lin,Wang Yan,Zhang Shao-Wen.Theoretical Study on the Singlet-state and the Triplet-state Mechanisms for the Reaction CH3O with NO[J]. Acta Phys. -Chim. Sin., 1996,12(05): 391-395
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top