Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 903-917    DOI: 10.3866/PKU.WHXB201702091
REVIEW     
Recent Research Advancements in NO-Releasing Nanomaterials
Hui-Jing XIANG1,2,Jin-Gang LIU2,*(),Yanli ZHAO1,*()
1 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
2 Key Laboratory for Advanced Materials of MOE, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
Download: HTML     PDF(1495KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nitric oxide (NO)—an endogenous diatomic molecule—plays key roles in various physiological and pathological processes, including smooth muscle relaxation in blood vessels, immune response, neurotransmission, respiration, and cell apoptosis. The biological functions of this molecule greatly depend on the location, timing, and dosage at which it is released. It is important to develop NO-delivery platforms capable of holding NO stably during storage and subsequently release optimal amounts of NO spatiotemporally at the desired location and time. In this review, recent advancements in the preparation of new exogenous NO donors including diazeniumdiolates, S-nitrosothiols, nitrobenzene, and metal-nitrosyl complexes are discussed. The integration of these NO donors with various nanoplatforms for controlled NO delivery and their potential applications in the biomedical field are highlighted.



Key wordsControlled release      Nanomedicine      Nitric oxide      Nitric oxide delivery nanoplatform      Nitric oxide donor     
Received: 01 December 2016      Published: 09 February 2017
MSC2000:  O647  
Fund:  Singapore Academic Research Fund(RG112/15);NTU-Northwestern Institute for Nanomedicine, and National Natural Science Foundation of China(21571062)
Corresponding Authors: Jin-Gang LIU,Yanli ZHAO     E-mail: liujingang@ecust.edu.cn;zhaoyanli@ntu.edu.sg
Cite this article:

Hui-Jing XIANG,Jin-Gang LIU,Yanli ZHAO. Recent Research Advancements in NO-Releasing Nanomaterials. Acta Physico-Chimica Sinca, 2017, 33(5): 903-917.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702091     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/903

Fig 1 Chemical structures of some diazeniumdiolates derivatives
Fig 2 Chemical structures of some S-nitrosothiol derivatives
Fig 3 Chemical structures of some nitrobenzene derivatives
Fig 4 Chemical structures of some ruthenium nitrosyls
Fig 5 Chemical structures of some iron nitrosyls
Fig 6 Schematic illustration of liposome-based NO-releasing nanosystems55, 57 Incorporation of (a) Chromium nitrosyl, trans-Cr (L)(ONO)2+ (L, cyclam = 1, 4, 8, 11-tetraazacyclotetradecane55, and (b) Ruthenium nitrosyl, [Ru (L) Cl (NO)] (L = N, N′-ethylene-bis (4-cholesteryl-hemisuccinate-salicylideneamine) into liposomes57
Fig 7 Schematic illustration of SiO2-based NO-releasing nanosystems74, 75 (a) schematic model of light-induced acid generation on gatekeeper for smart NO delivery74, (b) photoactive manganese nitrosyl loaded into columnar pores of an MCM-41 host75
Fig 8 Schematic illustration quantumn dots (QDs)-based NO-releasing nanosystem34, 84, 86 (a) cadmium selenide/zinc sulfide@chromium (Ⅲ) complexes CdSe/ZnS @trans-Cr (cyclam)(ONO)2+ 84, (b) silver sulfide-glutathione-S-nitrosothiol (Ag2S-GSH-SNO) nanoparticles34, (c) manganese-dopedzinc sulfide@chitosan-Roussin's black salt (Mn2+-ZnS@CS-RBS) nanoparticles86
Fig 9 Schematic illustration of UCNPs-based NO-releasing nanosystems90, 92 (a) NIR light excitation of upconverting nanoparticles_roussin′s black salt_poly (dimethylsiloxane) (UCNP_RBS_PD) 90, (b) X-ray-controlled NO release92
Fig 10 Schematic illustration of TiO2-based NO-releasing nanosystems32, 43, 44 (a) S-nitrosocysteine-decorated lead sulfide quantum dots/titanium dioxide (PbS QDs/TiO2) nanotubes for the production of NO and singlet oxygen (1O2)32, (b) ruthenium nitrosyls@ titanium dioxide nanoparticles (Ru-NO@TiO2 NPs) for target-directing delivery of NO and 1O2 to specific cancer cells43, (c) ruthenium nitrosyls@folic acid@carbon doped titanium dioxide (Lyso-Ru-NO@FA@C-TiO2) for directed attack of cancer cell lysosomes by NO and reactive oxygen species (ROS) under NIR light irradiation44
Fig 11 Schematic illustration of Carbon dot (CDs)-based NO-releasing nanosystems45, 102 (a) preparation of ruthenium nitrosyl@folic acid@carbon dots (Lyso-Ru-NO@FA@CDs) and its directed attack of cancer cell lysosomes by NO and photothermal therapy under irradiation with 808 nm light45, (b) NO photoreleasing carbon quntanum dots-nitrobenzene (CQDs-NO)102
1 Ignarro L. J. Nitric Oxide: Biology and Pathobiology San Diego, CA: Academic Press, 2000.
2 Butler A. R. ; Nicholson R. Life, Death and Nitric Oxide Cambridge: Royal Society of Chemistry, Life, Death and Nitric Oxide 2003.
3 Mann B. E. ; Motterlinib R. Chem. Commun. 2007, 4197.
4 Fajardo A. M. ; Piazza G. A. ; Tinsley H. N. Cancers 2014, 6, 436.
5 Garthwaite J. Trends Neurosci. 1991, 14, 60.
6 Xiang H. J. ; Guo M. ; Liu J. G. Eur. J.Inorg. Chem. 2017, 1586.
7 Feil R. ; Harper K. B. EMBO Rep. 2006, 7, 149.
8 Friebe A. ; Koesling D. Circ. Res. 2003, 93, 96.
9 Sehemy A. E. ; Postovita L. M. ; Fu Y. X. Nitric Oxide 2016, 54, 30.
10 Wang P. G. ; Xian M. ; Tang X. ; Wu X. ; Wen Z. ; Cai T. ; Janczuk A. J. Chem. Rev. 2002, 102, 1091.
11 Ostrowski A. D. ; Ford P. C. Dalton Trans. 2009, 10660.
12 Ford P. C. Nitric Oxide 2013, 34, 56.
13 Ford P. C. Acc. Chem. Res. 2008, 41, 190.
14 Fry N. L. ; Wei J. ; Mascharak P. K. Inorg. Chem. 2011, 50, 9045.
15 Fry N. L. ; Mascharak P. K. Acc. Chem. Res. 2011, 44, 289.
16 Rose M. J. ; Mascharak P. K. Coord. Chem. Rev. 2008, 252, 2093.
17 Rose M. J. ; Mascharak P. K. Curr. Opin. Chem. Biol. 2008, 12, 238.
18 Sortino S. Chem. Soc. Rev. 2010, 39, 2903.
19 Sortino S. J. Mater. Chem. 2012, 22, 301.
20 Kim J. ; Saravanakumar G. ; Choi H.W. ; Park D. ; Kim W. J. J. Mater. Chem. B 2014, 2, 341.
21 Nichols S. P. ; Storm W. L. ; Koh A. ; Schoenfisch M. H. Adv. Drug Deliv. Rev. 2012, 64, 1177.
22 Naghavi N. ; de Mel A. ; Alavijeh O. S. ; Cousins B. G. ; Seifalian A. M. Small 2013, 9, 22.
23 Jen M. C. ; Serrano M. C. ; van Lith R. ; Ameer G. A. Adv. Funct. Mater. 2012, 22, 239.
24 Kim J. ; Lee Y. ; Singha K. ; Kim H.W. ; Shin J. H. ; Jo S. ; Han D. K. ; Kim W. J. Bioconjugate Chem. 2011, 22, 1031.
25 Reynolds M. M. ; Frost M. C. ; Meyerhoff M. E. Free Radical Biol. Med. 2004, 37, 926.
26 Friedman A. ; Friedman J. Expert Opin. Drug Delivery 2009, 6, 1113.
27 Barraud N. ; Kardak B. G. ; Yepuri N. R. ; Howlin R. P. ; Webb J. S. ; Faust S. N. ; Kjelleberg S. ; Rice S. A. ; Kelso M.J. Angew. Chem. Int. Ed. 2012, 51, 9057.
28 Sharma K. ; Iyer A. ; Sengupta K. ; Chakrapani H. Org. Lett. 2013, 15, 2636.
29 Dharmaraja A. T. ; Ravikumar G. ; Chakrapani H. Org. Lett. 2014, 16, 2610.
30 Gao J. ; Zheng W. ; Zhang J. ; Guan D. ; Yang Z. ; Kongab D. ; Zhao Q. Chem. Commun. 2013, 49, 9173.
31 Riccio D. A. ; Schoenfisch M. H. Chem. Soc. Rev. 2012, 41, 3731.
32 Ratanatawanate C. ; Chyao A. ; Balkus Jr K. J. J. Am. Chem. Soc. 2011, 133, 3492.
33 Harding J. L. ; Reynolds M. M. J. Am. Chem. Soc. 2012, 134, 3330.
34 Tan L. ; Wan A. ; Li H. ACS Appl. Mater. Interfaces 2013, 5, 11163.
35 Fukuhara K. ; Kurihara M. ; Miyata N. J. Am. Chem. Soc. 2001, 123, 8662.
36 Suzuki T. ; Nagae O. ; Kato Y. ; Nakagawa H. ; Fukuhara K. ; Miyata N. J. Am. Chem. Soc. 2005, 127, 11720.
37 Hishikawa K. ; Nakagawa H. ; Furuta T. ; Fukuhara K. ; Tsumoto H. ; Suzuki T. ; Miyata N. J. Am. Chem. Soc. 2009, 131, 7488.
38 Ieda N. ; Nakagawa H. ; Peng T. ; Yang D. ; Suzuki T. ; Miyata N. J. Am. Chem. Soc. 2012, 134, 2563.
39 Ieda N. ; Hotta Y. ; Miyata N. ; Kimura K. ; Nakagawa H. J. Am. Chem. Soc. 2014, 136, 7085.
40 Kitamura K. ; Kawaguchi M. ; Ieda N. ; Miyata N. ; Nakagawa H. ACS Chem. Biol. 2016, 11, 1271.
41 Rose M. J. ; Fry N. L. ; Marlow R. ; Hinck L. ; Mascharak P.K. J. Am. Chem. Soc 2008, 130, 8834.
42 Fry N. L. ; Heilman B. J. ; Mascharak P. K. Inorg. Chem. 2011, 50, 317.
43 Xiang H. J. ; An L. ; Tang W.W. ; Yang S. P. ; Liu J. G. Chem. Commun. 2015, 51, 2555.
44 Xiang H. J. ; Deng Q. ; An L. ; Guo M. ; Yang S. P. ; Liu J. G. Chem. Commun. 2016, 52, 148.
45 Xiang H. J. ; Guo M. ; An L. ; Yang S. P. ; Zhang Q. L. ; Liu J. G. J. Mater. Chem. B 2016, 4, 4667.
46 Goyan R. L. ; Cramb D. T. Photochem. Photobiol. 2000, 72, 821.
47 Wecksler S. ; Mikhailovsky A. ; Ford P. C. J. Am. Chem. Soc. 2004, 126, 13566.
48 Conrado C. L. ; Wecksler S. ; Egler C. ; Magde D. ; Ford P. C. Inorg. Chem. 2004, 43, 5543.
49 Wecksler S. R. ; Mikhailovsky A. ; Korystov D. ; Ford P. C. J. Am. Chem. Soc. 2006, 128, 3831.
50 Saraiva J. ; M.-Oliveira S. S. ; Cicillini S. A. ; Eloy J. O. ; Marchetti J. M. J. Drug Delivery 2011, 2011, 936438.
51 Sharma A. ; Sharma U. S. Int. J.Pharm. 1997, 154, 123.
52 Lian T. ; Ho R. J. J. Pharm. Sci. 2001, 90, 667.
53 Malam Y. ; Loizidou M. ; Seifalian A. M. Trends Pharmacol. Sci. 2009, 30, 592.
54 Tai L. A. ; Wang Y. C. ; Yang C. S. Nitric Oxide 2010, 23, 60.
55 Ostrowski A. D. ; Lin B. F. ; Tirrell M. V. ; Ford P. C. Mol. Pharmaceutics 2012, 9, 2950.
56 Suchyta D. J. ; Schoenfisch M. H. Mol. Pharmaceutics 2015, 12, 3569.
57 Nakanishi K. ; Koshiyama T. ; Iba S. ; Ohba M. Dalton Trans. 2015, 44, 14200.
58 Rahman A. ; Padavettan V. J. Nanomater. 2012, 2012, 132424.
59 Roy I. ; Ohulchanskyy T. Y. ; Pudavar H. E. ; Bergey E. J. ; Oseroff A. R. ; Morgan J. ; Dougherty T. J. ; Prasad P. N. J. Am. Chem. Soc. 2003, 125, 7860.
60 Xu Z. P. ; Zeng Q. H. ; Lu G. Q. ; Yu A. B. Chem. Eng. Sci. 2006, 61, 1027.
61 Rim H. P. ; Min K. H. ; Lee H. J. ; Jeong S. Y. ; Lee S. C. Angew. Chem. Int. Ed. 2011, 50, 8853.
62 Bagwe R. P. ; Yang C. ; Hilliard L. R. ; Tan W. Langmuir 2004, 20, 8336.
63 Swihart M. T. Curr. Opin. Colloid Interface Sci. 2003, 8, 127.
64 Barbe C. ; Bartlett J. ; Kong L. G. ; Finnie K. ; Lin H. Q. ; Larkin M. ; Calleja S. ; Bush A. ; Calleja G. Adv. Mater. 2004, 16, 1959.
65 Park C. ; Oh K. ; Lee S. C. ; Kim C. Angew. Chem. Int. Ed. 2007, 46, 1455.
66 Zhang H. ; Annich G. M. ; Miskulin J. ; Stankiewicz K. ; Osterholzer K. ; Merz S. I. ; Bartlett R. H. ; Meyerhoff M. E. J. Am. Chem. Soc. 2003, 125, 5015.
67 Carpenter A.W. ; Slomberg D. L. ; Rao K. S. ; Schoenfisch M.H. ACS Nano 2011, 5, 7235.
68 Shin J. H. ; Metzger S. K. ; Schoenfisch M. H. J. Am. Chem. Soc. 2007, 129, 4612.
69 Carpenter A.W. ; Worley B. V. ; Slomberg D. L. ; Schoenfisch M. H. Biomacromolecules 2012, 13, 3334.
70 Rahmat N. ; Abdullah A. Z. ; Mohamed A. R. A. J. Appl. Sci. 2010, 7, 1579.
71 Li Z. ; Barnes J. C. ; Bosoy A. ; Stoddart J. F. ; Zink J. I. Chem. Soc. Rev. 2012, 41, 2590.
72 Lu Y. ; Slomberg D. L. ; Sun B. ; Schoenfisch M. H. Small 2013, 9, 2189.
73 Carpenter A.W. ; Reighard K. P. ; Saavedra J. E. ; Schoenfisch M. H. Biomater. Sci. 2013, 1, 456.
74 Choi H.W. ; Kim J. ; Kim J. ; Kim Y. ; Song H. B. ; Kim J.H. ; Kim K. ; Kim W. J. ACS Nano 2016, 10, 4199.
75 Heilman B. J. ; St John J. ; Oliver S. R. ; Mascharak P. K. J. Am. Chem. Soc. 2012, 134, 11573.
76 Frost M. C. ; Meyerhoff M. E. J. Biomed. Mater. Res., Part A 2005, 72, 409.
77 Riccio D. A. ; Nugent J. L. ; Schoenfisch M. H. Chem. Mater. 2011, 23, 1727.
78 Nam J. ; Won N. ; Bang J. ; Jin H. ; Park J. ; Jung S. ; Park Y. ; Kim S. Adv. Drug Delivery Rev. 2013, 65, 622.
79 Wang L. S. ; Chuang M. C. ; Ho J. A. Int. J.Nanomed. 2012, 7, 4679.
80 Pinaud F. ; Michalet X. ; Bentolila L. A. ; Tsay J. M. ; Doose S. ; Li J. J. ; Iyer G. ; Weiss S. Biomaterials 2006, 27, 1679.
81 Zrazhevskiy P. ; Sena M. ; Gao X. Chem. Soc. Rev. 2010, 39, 4326.
82 Bera D. ; Qian L. ; Tseng T. K. ; Holloway P. H. Materials 2010, 3, 2260.
83 Neuman D. ; Ostrowski A. D. ; Absalonson R. O. ; Strouse G.F. ; Ford P. C. J. Am. Chem. Soc. 2007, 129, 4146.
84 Neuman D. ; Ostrowski ; A. D. ; Mikhailovsky A. A. ; Absalonson R. O. ; Strouse G. F. ; Ford P. C. J. Am. Chem. Soc. 2008, 130, 168.
85 Burks P. T. ; Ostrowski A. D. ; Mikhailovsky A. A. ; Chan E.M. ; Wagenknecht P. S. ; Ford P. C. J. Am. Chem. Soc. 2012, 134, 13266.
86 Tan L. ; Wan A. ; Zhu X. ; Li H. Chem. Commun. 2014, 50, 5725.
87 Zhao L. ; Peng J. ; Huang Q. ; Li C. ; Chen M. ; Sun Y. ; Lin Q. ; Zhu L. ; Li F. Adv. Funct. Mater. 2014, 24, 363.
88 Gu Z. ; Yan L. ; Tian G. ; Li S. ; Chai Z. ; Zhao Y. Adv. Mater. 2013, 25, 3758.
89 Garcia J. V. ; Yang J. ; Shen D. ; Yao C. ; Li X. ; Wang R. ; Stucky G. D. ; Zhao D. ; Ford P. C. ; Zhang F. Small 2012, 8, 3800.
90 Burks P. T. ; Garcia J. V. ; GonzalezIrias R. ; Tillman J. T. ; Niu M. ; Mikhailovsky A. A. ; Zhang J. ; Zhang F. ; Ford P. C. J. Am. Chem. Soc. 2013, 135, 18145.
91 Dong K. ; Ju E. ; Gao N. ; Wang Z. ; Ren J. ; Qu X. Chem. Commun. 2016, 52, 5312.
92 Fan W. ; Bu W. ; Zhang Z. ; Shen B. ; Zhang H. ; He Q. ; Ni D. ; Cui Z. ; Zhao K. ; Bu J. ; Du J. ; Liu J. ; Shi J. Angew. Chem. Int. Ed. 2015, 127, 14026.
93 Zhang X. ; Tian G. ; Yin W. ; Wang L. ; Zheng X. ; Yan L. ; Li J. ; Su H. ; Chen C. ; Gu Z. ; Zhao Y. Adv. Funct. Mater. 2015, 25, 3049.
94 Pang C. L. ; Lindsay R. ; Thornton G. Chem. Soc. Rev. 2008, 37, 2328.
95 Dohnalek Z. ; Lyubinetsky I. ; Rousseau R. Prog. Surf. Sci. 2010, 85, 161.
96 Feng X. ; Zhu K. ; Frank A. J. ; Grimes C. A. ; Mallouk T. E. Angew. Chem. Int. Ed. 2012, 51, 2727.
97 Yin Z. F. ; Wu L. ; Yang H. G. ; Su Y. H. Phys. Chem. Chem. Phys. 2013, 15, 4844.
98 Huang P. ; Lin J. ; Wang X. ; Wang Z. ; Zhang C. ; He M. ; Wang K. ; Chen F. ; Li Z. ; Shen G. ; Cui D. ; Chen X. Adv. Mater. 2012, 24, 5104.
99 Wang X. ; Cao L. ; Yang S. T. ; Lu F. ; Meziani M. J. ; Tian L. ; Sun K.W. ; Bloodgood M. A. ; Sun Y. P. Angew. Chem. Int. Ed. 2010, 49, 5310.
100 Yang X. D. ; Xiang H. J. ; An L. ; Yang S. P. ; Liu J. G. New J. Chem. 2015, 39, 800.
101 Xu J. ; Zeng F. ; Wu H. ; Hu C. ; Yu C. ; Wu S. Small 2014, 10, 3750.
102 Fowley C. ; McHale A. P. ; McCaughan B. ; Fraix A. ; Sortino S. ; Callan J. F. Chem. Commun. 2015, 51, 81.
103 Deng Q. ; Xiang H. J. ; Tang W.W. ; An L. ; Yang S. P. ; Zhang Q. L. ; Liu J. G. J. Inorg. Biochem. 2016, 165, 152.
104 Zhang H. ; Gruner G. ; Zhao Y. J. Mater. Chem. B 2013, 1, 2542.
105 Mao H. Y. ; Laurent S. ; Chen W. ; Akhavan O. ; Imani M. ; Ashkarran A. ; Mahmoudi M. Chem. Rev. 2013, 113, 3407.
106 Liu J. ; Cui L. ; Losic D. Acta Biomater. 2013, 9, 9243.
107 Fan J. ; He N. ; He Q. ; Liu Y. ; Ma Y. ; Fu X. ; Liu Y. ; Huang P. ; Chen X. Nanoscale 2015, 7, 20055.
108 Marino N. ; Petralia S. ; Lloret M. P. ; Mosinger J. ; Conoci S. ; Sortino S. J. Mater. Chem. B 2016, 4, 5825.
[1] Linji GONG,Jiani XIE,Shuang ZHU,Zhanjun GU,Yuliang ZHAO. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 140-167.
[2] HAOWei-Ju, ZHANG Jun-Qi, SHANG Ya-Zhuo, XU Shou-Hong, LIU Hong-Lai. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2628-2635.
[3] XU Wen-Qing, ZHAO Jun, WANG Hai-Rui, ZHU Ting-Yu, LI Peng, JING Peng-Fei. Catalytic Oxidation Activity of NO on TiO2-Supported Mn-Co Composite Oxide Catalysts[J]. Acta Physico-Chimica Sinca, 2013, 29(02): 385-390.
[4] ZHUANG Ke, QIU Jing, XU Bo-Lian, FAN Yi-Ning. Promotional Effect of Cerium Oxide on the Catalytic Properties of Ce-Mn-Ti-O Catalysts for Selective Catalytic Reduction of NO[J]. Acta Physico-Chimica Sinca, 2012, 28(03): 681-685.
[5] JIN Shu-Ping, FENG Lei, HE Wen-Yan, HAN Yu-Qi, WEI Yu-Juan. Preparation and Release Behavior in vitro of Aspirin/Chitosan Nanospheres by Nucleation and Ionic Crosslinking in Emulsion[J]. Acta Physico-Chimica Sinca, 2010, 26(09): 2581-2588.
[6] LIU Tian-Qing. Effects of Triton X-100 on Properties of Hemoglobin and Controlled Release of Drug in Hemoglobin/Ribavirin/H2O System[J]. Acta Physico-Chimica Sinca, 2008, 24(04): 625-632.
[7] Bao De-Cai;Zhang Qiong-Gang;Liu Xiu-Dong;Ma Xiao-Jun;Yuan Quan. Preparation of VE Microcapsules and Its Controlled Release Characteristics[J]. Acta Physico-Chimica Sinca, 2004, 20(02): 178-181.
[8] Li Zhen-Hua, Pi Hong-Qiong, He Bing-Lin. Adsorption and Release Characteristics of Cation Exchange Resin for Calcium Channel Blocker[J]. Acta Physico-Chimica Sinca, 2000, 16(04): 379-384.
[9] Chen Li-Tao, Chen Guang-Ju, Fu Xiao-Yuan. AM1 Studies of Two Pathways of Vinylacetylene React with Nitric Oxide[J]. Acta Physico-Chimica Sinca, 1998, 14(11): 1001-1006.