Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 886-902    DOI: 10.3866/PKU.WHXB201702092
REVIEW     
Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction
Jun WANG,Zi-Dong WEI*()
Download: HTML     PDF(2377KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Non-precious metal catalysts should be studied to substitute precious Pt catalysts. Recent developments of non-precious-metal catalysts (combined with the achievements of our group) are summarized in this paper. The main issues that exist in the transition metal oxides, metal-nitrogen-carbon material, and heteroatom-doped carbon material are highlighted from the aspects of the synthetic methods and mechanisms. The research tendency and perspective of these non-precious metal catalysts are provided.



Key wordsOxygen reduction reaction      Fuel cell      Non-precious metal catalyst      Transition metal oxide      Metal-nitrogen-carbon      Heteratoms doped carbon     
Received: 05 December 2016      Published: 09 February 2017
MSC2000:  O646  
  O641  
Fund:  the National Natural Science Foundation of China(91534205);the National Natural Science Foundation of China(21573029);the National Natural Science Foundation of China(21436003);the National Natural Science Foundation of China(51272297)
Corresponding Authors: Zi-Dong WEI     E-mail: zdwei@cqu.edu.cn
Cite this article:

Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702092     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/886

Fig 1 (a) Scanning electron microscopy image (SEM) and (b) high magnification transmission electron microscopy (TEM) images of Co3O4/N-rmGO hybrid; (c) C K-edge X-ray absorption near edge structure (XANES) of N-rmGO and Co3O4/N-rmGO hybrid, inset showing O K-edge XANES of Co3O4 and Co3O4/N-rmGO hybrid; (d) oxygen reduction polarization curves of Co3O4/rmGO, Co3O4/N-rmGO and a high quality commercial Pt/C catalyst14 catalyst loading: 0.24 mg·cm-2
Fig 2 (a) Relationship between oxygen vacancy (OV) concentration and oxygen reduction reaction (ORR) activity of MnO2(110) surface; (b) changes in the band gap, EHOMO, and EFermi of β-MnO2, EFermi of MnOOH, and O―O bond as a function of the OV concentration20
Fig 3 First-principle study of surface oxygen adsorption on different sites of (a, b) cubic and (c, d) tetragonal spinel phases26
Fig 4 Scheme of structure reversing and dissimilarity effect, and the relationships between ORR activity and Fermi energy or lattice parameters28
Fig 5 Illustration of the synthesis of Fe-N-doped ordered mesoporous carbon catalysts (FeX@NOMC)52
Fig 6 TEM images of hollow micro/meso-pore nitrogen-doped carbon (HMNC) at different Fe contents54 (a) HMNC-0-800, (b) HMNC-0.2-800, (c) HMNC-0.5-800, (d) HMNC-0.8-800, (e) HMNC-1.0-800
Fig 7 (a) Shape fixing via salt recrystallization method; (b) steady-state plots (bottom) of ORR polarization and (top) of H2O2 yield for different catalysts in O2-saturated 0.1 mol·L-1 HClO4; (c) polarization curves and corresponding power densities of membrane electrode assemblies fabricated with the CPANI-Fe-NaCl, CPANI-NaCl, and CPANI cathode catalysts55 (c) The loading is 50 μg of Pt cm-2 for Pt/C (40% (w)) and is 0.6 mg·cm-2 for non-Pt catalyst.
Fig 8 (a) SEM image of the as-synthesized vertically alligned nitrogen-containing carbon nanotube (VA-NCNTs); (b) TEM image of the electrochemically purified VA-NCNTs; (c) digital photograph of the VA-NCNT array; (d) rotating ring-disk electrode (RRDE) voltammograms for oxygen reduction in air-saturated 0.1 mol·L-1 KOH at the Pt-C supported by a glass carbon electrode (Pt-C/GC) (curve 1), nitrogen-free nonaligned carbon nanotube supported by a glass carbon electrode (VA-CCNT/GC) (curve 2), and VA-NCNT (curve 3) electrodes; (e) calculated charge density distribution for the NCNTs; (f) schematic representations of possible adsorption modes of an oxygen molecule at the CCNTs (top) and NCNTs (bottom)59 scale bar: (a) 2 mm; (b) 50 nm
Fig 9 Schematic representation of the common N bonding configurations80
Fig 10 (a) Bandgap vs N doped content for graphitic N-doped graphene (GNG) and pyridinic N-doped graphene (PNG); (b) free energy curves of ORR on GNG and PNG; (c) a novel perspective about the dispute on the contribution of different N-type to ORR activity in N-doped graphene85
Name of catalyst Content of PNa/% Content of GNb/% Total N/% Active N Ref.
1 CoPc-ph-900 - - 0.80 GN 86
2 NCNT-800 ~2.00 ~0.70 ~3.00 GN 87
3 PDI-900 0.56 1.40 1.98 GN 88
4 N-graphene (900) 2.41 0.39 2.80 GN 89
5 CNTPMⅥ 5.60 2.80 8.40 PN 90
6 rGS 2.01 1.93 4.70 PN 81
7 VA-NCNT - - 4.00-6.00 PN 87
8 NG@MMT 4.24 0.46 4.7 PN 80
Table 1 Summary of various N-doped carbon material including distribution of different N-doped parttern, and the most active parttern
Fig 11 (a) Schematic of the selectivity inside and outside of montmorillonite (MMT) during nitrogen-doped graphene (NG) synthesis; (b) Bode spectra of different NG material80; (c) ORR polarization for different catalysts in O2-saturated 0.1 mol·L-1 HClO4 (b) The sine wave with an amplitude of 5.0 mV from 10 MHz to 10 kHz is applicated for different catalysts.
Sample Synthesis condition δ/nm Planar N/% Quaternary and oxidizde N/% Nitrile N/% Specific area/ (m2·g-1) jk/(mA·cm-2) (at 0.7 V) H2O2 yield/%a
NC○MMT without MMT 23.67 70.22 6.11 171.5 0.1 30.03
NC☉MMT between MMT particles ca103b 25.87 39.91 36.20 226.4 0.3 8.30
NG@MMT inside Na-MMT 0.56c 80.32 19.68 0 247.0 4.6 3.72
NG@H-MMT inside H-MMT 0.46c 90.27 9.73 0 290.3 9.2 2.18
Table 2 X-ray photoelectron spectroscopy (XPS) data and RRDE results for nitrogen doped carbon with different conditions
Fig 12 Schematic of the effective utilization of N-containing active sites; (b) the Bode spectra with different catalysts; (c) capacitance-eliminated linear sweep voltammetry (LSV) results for different catalysts (b) through the application of a sine wave with amplitude of 5.0 mV from 10 mHz to 10 kHz for bulk nitrogen-doped carbon (NC), CNT@NC and NC + CNTs. (b) The inset is the simple illustration of the homemade button cell. (c) scan rate:10 mV·s-1, rotation speed:1600 r·min-1. The catalyst loadings are 0.6 mg·cm-2 for non-Pt catalysts and 0.026 mg·cm-2 for JM-Pt/C93.
Fig 13 (a) Spin density distributions on perfect graphene cluster with substituting S at the zigzag edge71; (b) spin and charge density of graphene network dual-doped by N and S77 (a) The density variation from positive to negative values in the color order of red, orange, yellow, green, and blue. Sulfur atoms is labeled with S; (b) C1 has very high spin density, C2 and C3 have high positive charge density, and C4 and C5 have moderately high positive spin densities. color online
Fig 14 (a) Schematic illustration of fabrication process and structure of the N, P-GCNS bifunctional oxygen electrocatalyst; (b) bifunctional catalytic activity of various catalysts toward both ORR and oxygen evolution reactions (OER)63
1 Steele B. C. ; Heinzel A. Nature 2001, 414 (6861), 345.
2 Ding W. ; Zhang X. ; Li L. ; Wei Z. D. J. Electrochem. 2014, 20 (5), 426.
2 丁炜; 张雪; 李莉; 魏子栋. 电化学, 2014, 20 (5), 426.
3 Shao M. ; Chang Q. ; Dodelet J. P. ; Chenitz R. Chem. Rev. 2016, 116 (6), 3594.
4 Nie Y. ; Li L. ; Wei Z. D. Chem. Soc. Rev. 2015, 44 (8), 2168.
5 Peng S. ; Guo H. L. ; Kang X. F. Acta Phys.-Chim. Sin. 2014, 30 (9), 1778.
5 彭三; 郭慧林; 亢晓峰. 物理化学学报, 2014, 30 (9), 1778.
6 Tian C. X. ; Yang J. S. ; Li L. ; Zhang X. H. ; Chen J. H. Acta Phys.-Chim. Sin. 2016, 32 (6), 1473.
6 田春霞; 杨军帅; 李丽; 张小华; 陈金华. 物理化学学报, 2016, 32 (6), 1473.
7 Mao L. Q. ; Zhang D. ; Sotomura T. ; Nakatsu K. ; Koshiba N. ; Ohsaka T. Electrochim. Acta 2003, 48 (8), 1015.
8 Wang Y. G. ; Cheng L. ; Li F. ; Xiong H. M. ; Xia Y. Y. Chem.Mater. 2007, 19 (8), 2095.
9 Cheng F. Y. ; Shen J. ; Ji W. Q. ; Tao Z. L. ; Chen J. ACS Appl.Mater. Interfaces 2009, 1 (2), 460.
10 Cheng F. ; Su Y. ; Liang J. ; Tao Z. ; Chen J. Chem. Mater. 2010, 22 (3), 898.
11 Feng J. ; Liang Y. Y. ; Wang H. L. ; Li Y. G. ; Zhang B. ; Zhou J. G. ; Wang J. ; Regier T. ; Dai H. J. Nano Res. 2012, 5 (10), 718.
12 Tan Y. M. ; Xu C. F. ; Chen G. X. ; Fang X. L. ; Zheng N. F. ; Xie Q. J. Adv. Funct. Mater. 2012, 22 (21), 4584.
13 Tang Q.W. ; Jiang L. H. ; Liu J. ; Wang S. L. ; Sun G. Q. ACSCatal. 2014, 4 (2), 457.
14 Liang Y. Y. ; Li Y. G. ; Wang H. L. ; Zhou J. G. ; Wang J. ; Regier T. ; Dai H. J. Nat. Mater. 2011, 10 (10), 780.
15 Guo S. J. ; Zhang S. ; Wu L. H. ; Sun S. H. Angew. Chem. Int.Ed. 2012, 51 (47), 11770.
16 Liang Y. Y. ; Wang H. L. ; Diao P. ; Chang W. ; Hong G. S. ; Li Y. G. ; Gong M. ; Xie L. M. ; Zhou J. G. ; Wang J. ; Regier T. Z. ; Wei F. ; Dai H. J. J. Am. Chem. Soc. 2012, 134 (38), 15849.
17 Masa J. ; Xia W. ; Sinev I. ; Zhao A. ; Sun Z. Y. ; Grützke S. ; Weide P. ; Muhler M. ; Schuhmann W. Angew. Chem. Int. Ed. 2014, 53 (32), 8508.
18 Wang L. ; Maxisch T. ; Ceder G. Phys. Rev. B 2006, 73 (19)
19 Zhang Y. P. ; Hu Y. Y. ; Li S. Z. ; Sun J. ; Hou B. J. Power Sources 2011, 196 (22), 9284.
20 Li L. ; Feng X. H. ; Nie Y. ; Chen S. G. ; Shi F. ; Xiong K. ; Ding W. ; Qi X. Q. ; Hu J. S. ; Wei Z. D. ; Wan L. J. ; Xia M.R. ACS Catal. 2015, 5 (8), 4825.
21 Cheng F. ; Zhang T. ; Zhang Y. ; Du J. ; Han X. ; Chen J. Angew. Chem. Int. Ed. 2013, 52 (9), 2474.
22 Indra A. ; Menezes P.W. ; Sahraie N. R. ; Bergmann A. ; Das C. ; Tallarida M. ; Schmeisser D. ; Strasser P. ; Driess M. J.Am. Chem. Soc. 2014, 136 (50), 17530.
23 Zhao A. ; Masa J. ; Xia W. ; Maljusch A. ; Willinger M. G. ; Clavel G. ; Xie K. ; Schlogl R. ; Schuhmann W. ; Muhler M. J.Am. Chem. Soc. 2014, 136 (21), 7551.
24 Menezes P.W. ; Indra A. ; Sahraie N. R. ; Bergmann A. ; Strasser P. ; Driess M. ChemSusChem 2015, 8 (1), 164.
25 Hassan D. ; El-Safty S. ; Khalil K. A. ; Dewidar M. ; El-Magd G. A. Materials 2016, 9 (9), 759.
26 Cheng F. ; Shen J. ; Peng B. ; Pan Y. ; Tao Z. ; Chen J. Nat.Chem 2011, 3 (1), 79.
27 Yang H. ; Hu F. ; Zhang Y. ; Shi L. ; Wang Q. Nano Res. 2016, 9 (1), 207.
28 Wu G. ; Wang J. ; Ding W. ; Nie Y. ; Li L. ; Qi X. ; Chen S. ; Wei Z. Angew. Chem. Int. Ed. 2016, 128 (4), 1340.
29 Levy N. ; Mahammed A. ; Kosa M. ; Major D. T. ; Gross Z. ; Elbaz L. Angew. Chem. Int. Ed. 2015, 54 (47), 14080.
30 Jasinski R. Nature 1964, 201 (4925), 1212.
31 Jahnke H. ; Sch?nborn M. ; Zimmermann G. Top. Curr. Chem. 1976, 61 (411), 133.
32 Maruyama J. ; Abe I. J. Electrochem. Soc. 2007, 154 (3), B297.
33 Huang H. C. ; Shown I. ; Chang S. T. ; Hsu H. C. ; Du H. Y. ; Kuo M. C. ; Wong K. T. ; Wang S. F. ; Wang C. H. ; Chen L.C. ; Chen K. H. Adv. Funct. Mater. 2012, 22 (16), 3500.
34 Higgins, D.; Chen, Z. Electrocatalysis in Fuel Cells, Volume 9 of the Series Lecture Notes in Energy; Springer: London, 2013;pp 247-269.doi: 10.1007/978-1-4471-4911-8_9
35 Yeager E. ; Yeager E. Electrochim. Acta 1984, 29 (84), 1527.
36 Bezerra C.W. B. ; Zhang L. ; Lee K. ; Liu H. ; Marques A. L.B. ; Marques E. P. ; Wang H. ; Zhang J. Electrochim. Acta 2008, 53 (15), 4937.
37 Mase K. ; Ohkubo K. ; Fukuzumi S. J. Am. Chem. Soc. 2013, 135 (7), 2800.
38 Alt H. ; Binder H. ; SandstedeG. J. Catal. 1973, 28 (1), 8.
39 Wu G. ; Zelenay P. Acc. Chem. Res. 2013, 46 (8), 1878.
40 Jaouen F. ; Proietti E. ; Lefèvre M. ; Chenitz R. ; Dodelet J. P. ; Wu G. ; Chung H. T. ; Johnston C. M. ; Zelenay P. EnergyEnviron. Sci. 2011, 4 (1), 114.
41 Wu G. ; More K. L. ; Xu P. ; Wang H. L. ; Ferrandon M. ; Kropf A. J. ; Myers D. J. ; Ma S. ; Johnston C. M. ; Zelenay P. Chem. Commun. (Camb) 2013, 49 (32), 3291.
42 Orellana W. J. Phys. Chem. C 2013, 117 (19), 9812.
43 Liang W. ; Chen J. ; Liu Y. ; Chen S. ACS Catal. 2014, 4 (11), 4170.
44 Sun J. ; Fang Y. H. ; Liu Z. P. Phys. Chem. Chem. Phys 2014, 16 (27), 13733.
45 Domínguez C. ; Pérez-Alonso F. J. ; Salam M. A. ; Al-Thabaiti S. A. ; Pe?a M. A. ; Barrio L. ; Rojas S. J. Mater.Chem. A 2015, 3 (48), 24487.
46 Banham D. ; Ye S. ; Pei K. ; Ozaki J. I. ; Kishimoto T. ; Imashiro Y. J. Power Sources 2015, 285 (2015), 334.
47 Lefevre M. ; Proietti E. ; Jaouen F. ; Dodelet J. P. Science 2009, 324 (5923), 71.
48 Chung H. T. ; Johnston C. M. ; Artyushkova K. ; Ferrandon M. ; Myers D. J. ; Zelenay P. Electrochem. Commun. 2010, 12 (12), 1792.
49 Wu G. ; More K. L. ; Johnston C. M. ; Zelenay P. Science 2011, 332 (6028), 443.
50 Proietti E. ; Jaouen F. ; Lefevre M. ; Larouche N. ; Tian J. ; Herranz J. ; Dodelet J. P. Nat. Commun 2011, 2
51 Wang X. ; Zhang H. ; Lin H. ; Gupta S. ; Wang C. ; Tao Z. ; Fu H. ; Wang T. ; Zheng J. ; Wu G. Nano Energy 2016, 25, 110.
52 Li Z. ; Li G. ; Jiang L. ; Li J. ; Sun G. ; Xia C. ; Li F. Angew.Chem. Int. Ed. 2015, 54 (5), 1494.
53 Liang H.W. ; Wei W. ; Wu Z. S. ; Feng X. ; Mullen K. J. Am.Chem. Soc. 2013, 135 (43), 16002.
54 Wu R. ; Chen S. ; Zhang Y. ; Wang Y. ; Nie Y. ; Ding W. ; Qi X. ; Wei Z. J. Mater. Chem. A 2016, 4 (7), 2433.
55 Ding W. ; Li L. ; Xiong K. ; Wang Y. ; Li W. ; Nie Y. ; Chen S. ; Qi X. ; Wei Z. J. Am. Chem. Soc. 2015, 137 (16), 5414.
56 Wang W. ; Luo J. ; Chen W. ; Li J. ; Xing W. ; Chen S. J.Mater. Chem. A 2016, 4 (33), 12768.
57 Li Q. ; Zhang S. ; Dai L. ; Li L. S. J. Am. Chem. Soc. 2012, 134 (46), 18932.
58 Li Y. ; Zhao Y. ; Cheng H. ; Hu Y. ; Shi G. ; Dai L. ; Qu L. J.Am. Chem. Soc. 2012, 134 (1), 15.
59 Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L. Science 2009, 323 (5915), 760.
60 Xiong C. ; Wei Z. ; Hu B. ; Chen S. ; Li L. ; Guo L. ; Ding W. ; Liu X. ; Ji W. ; Wang X. J. Power Sources 2012, 215, 216.
61 Wei Q. ; Tong X. ; Zhang G. ; Qiao J. ; Gong Q. ; Sun S. Catalysts 2015, 5 (3), 1574.
62 Xing T. ; Zheng Y. ; Li L. H. ; Cowie B. C. C. ; Gunzelmann D. ; Qiao S. Z. ; Huang S. ; Chen Y. ACS Nano 2014, 8 (7), 6856.
63 Li R. ; Wei Z. ; Gou X. ACS Catal. 2015, 5 (7), 4133.
64 Liu Y. L. ; Shi C. X. ; Xu X. Y. ; Sun P. C. ; Chen T. H. J.Power Sources 2015, 283, 389.
65 Niu W. ; Li L. ; Liu X. ; Wang N. ; Liu J. ; Zhou W. ; Tang Z. ; Chen S. J. Am. Chem. Soc. 2015, 137 (16), 5555.
66 Wang G. ; Sun Y. ; Li D. ; Liang H.W. ; Dong R. ; Feng X. ; Mullen K. Angew. Chem. Int. Ed. 2015, 54 (50), 15191.
67 Guo D. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351 (6271), 361.
68 Meng Y. ; Voiry D. ; Goswami A. ; Zou X. ; Huang X. ; Chhowalla M. ; Liu Z. ; Asefa T. J. Am. Chem. Soc. 2014, 136 (39), 13554.
69 Yang L. ; Jiang S. ; Zhao Y. ; Zhu L. ; Chen S. ; Wang X. ; Wu Q. ; Ma J. ; Ma Y. ; Hu Z. Angew. Chem. Int. Ed. 2011, 50 (31), 7132.
70 Jeon I. Y. ; Zhang S. ; Zhang L. ; Choi H. J. ; Seo J. M. ; Xia Z. ; Dai L. ; Baek J. B. Adv. Mater 2013, 25 (42), 6138.
71 Zhang L. ; Niu J. ; Li M. ; Xia Z. J. Phys. Chem. C 2014, 118 (7), 3545.
72 Wang J. ; Wu Z. X. ; Han L. L. ; Liu Y. Y. ; Guo J. P. ; Xin H.L. ; Wang D. L. Chin. Chem. Lett. 2016, 27 (4), 597.
73 Zhang C. ; Mahmood N. ; Yin H. ; Liu F. ; Hou Y. Adv. Mater 2013, 25 (35), 4932.
74 Zhang X. ; Lu Z. ; Fu Z. ; Tang Y. ; Ma D. ; Yang Z. J. Power Sources 2015, 276, 222.
75 Jiang S. ; Sun Y. ; Dai H. ; Hu J. ; Ni P. ; Wang Y. ; Li Z. ; Li Z. Nanoscale 2015, 7 (24), 10584.
76 Peera S. G. ; Sahu A. K. ; Arunchander A. ; Bhat S. D. ; Karthikeyan J. ; Murugan P. Carbon 2015, 93, 130.
77 Liang J. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int.Ed. 2012, 51 (46), 11496.
78 Wang S. ; Zhang L. ; Xia Z. ; Roy A. ; Chang D.W. ; Baek J.B. ; Dai L. Angew. Chem. Int. Ed. 2012, 51 (17), 4209.
79 Zhang L. ; Niu J. ; Dai L. ; Xia Z. Langmuir 2012, 28 (19), 7542.
80 Ding W. ; Wei Z. ; Chen S. ; Qi X. ; Yang T. ; Hu J. ; Wang D. ; Wan L. J. ; Alvi S. F. ; Li L. Angew. Chem. Int. Ed. 2013, 52 (45), 11755.
81 Lee K. R. ; Lee K. U. ; Lee J.W. ; Ahn B. T. ; Woo S. I. Electrochem. Commun. 2010, 12 (8), 1052.
82 Subramanian N. P. ; Li X. ; Nallathambi V. ; Kumaraguru S.P. ; Colon-Mercado H. ; Wu G. ; Lee J.W. ; Popov B. N. J.Power Sources 2009, 188 (1), 38.
83 Ikeda T. ; Boero M. ; Huang S. F. ; Terakura K. ; Oshima M. ; Ozaki J. J. Phys. Chem. C 2008, 112 (38), 14706.
84 Luo Z. ; Lim S. ; Tian Z. ; Shang J. ; Lai L. ; Macdonald B. ; Fu C. ; Shen Z. ; Yu T. ; Lin J. J. Mater. Chem. 2011, 21 (22), 8038.
85 Wang J. ; Li L. ; Wei Z. D. Acta Phys.-Chim. Sin. 2016, 32 (1), 321.
85 王俊; 李莉; 魏子栋. 物理化学学报, 2016, 32 (1), 321.
86 Niwa H. ; Horiba K. ; Harada Y. ; Oshima M. ; Ikeda T. ; Terakura K. ; Ozaki J. I. ; Miyata S. J. Power Sources 2009, 187 (1), 93.
87 Nagaiah T. C. ; Kundu S. ; Bron M. ; Muhler M. ; Schuhmann W. Electrochem. Commun. 2010, 12 (3), 338.
88 Liu R. ; Wu D. ; Feng X. ; Müllen K. Angew. Chem. Int. Ed. 2010, 49 (14), 2565.
89 Geng D. ; Chen Y. ; Chen Y. ; Li Y. ; Li R. ; Sun X. ; Ye S. ; Knights S. Energy Environ. Sci. 2011, 4 (3), 760.
90 Rao C. V. ; Cabrera C. R. ; Ishikawa Y. J. Phys. Chem. Lett. 2010, 1 (18), 2622.
91 Zhang Y. ; Ge J. ; Wang L. ; Wang D. ; Ding F. ; Tao X. ; Chen W. Sci. Rep. 2013, 3, 2771.
92 Pels J. R. ; Kapteijn F. ; Moulijn J. A. ; Zhu Q. ; Thomas K.M. Carbon 1995, 33 (11), 1641.
93 Nie Y. ; Xie X. ; Chen S. ; Ding W. ; Qi X. ; Wang Y. ; Wang J. ; Li W. ; Wei Z. ; Shao M. Electrochim. Acta 2016, 187, 153.
94 Yang S. ; Feng X. ; Wang X. ; Mullen K. Angew. Chem. Int.Ed. 2011, 50 (23), 5339.
95 Li R. ; Wei Z. ; Gou X. ; Xu W. RSC Adv. 2013, 3 (25), 9978.
96 Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. J. Am. Chem. Soc. 2014, 136 (11), 4394.
97 Zhang L. ; Xia Z. J. Phys. Chem. C 2011, 115 (22), 11170.
98 Zhang J. ; Zhao Z. ; Xia Z. ; Dai L. Nature Nanotech. 2015, 10 (5), 444.
99 Wu Z. ; Liu R. ; Wang J. ; Zhu J. ; Xiao W. ; Xuan C. ; Lei W. ; Wang D. Nanoscale 2016, 8 (45), 19086.
100 Zhang H. ; Liu X. ; He G. ; Zhang X. ; Bao S. ; Hu W. J.Power Sources 2015, 279, 252.
101 Pan F. ; Duan Y. ; Zhang X. ; Zhang J. Chem Cat Chem 2016, 8 (1), 163.
102 Zhao Y. ; Yang L. ; Chen S. ; Wang X. ; Ma Y. ; Wu Q. ; Jiang Y. ; Qian W. ; Hu Z. J. Am. Chem. Soc. 2013, 135 (4), 1201.
103 Zhao Z. ; Xia Z. ACS Catal 2016, 6 (3), 1553.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[3] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1811-1821.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[5] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.
[6] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[7] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.
[8] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[9] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 386-392.
[10] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 370-376.
[11] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[12] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[13] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2171-2184.
[14] LU Shan-Fu, PENG Si-Kan, XIANG Yan. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1859-1865.
[15] MAI Jun-Lin, SUN De-Lin, QUAN Xue-Bo, LI Li-Bo, ZHOU Jian. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1649-1657.