Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 968-975    DOI: 10.3866/PKU.WHXB201702093
ARTICLE     
Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery
Jun-Tao LI1,*(),Jiao-Hong WU1,Tao ZHANG1,Ling HUANG2
1 College of Energy, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download: HTML     PDF(1878KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Biochar derived from reproducible massive biomasses presents the advantages of low cost and renewable resources. In this work aiming to solve the existing problems of the lithium-sulfur battery, sulfur@biochar (S@biochar) composite cathode materials with high capacity and good cycle performance were developed. Specifically, four kinds of biochar prepared from rice husk, miscanthus, fir, and pomelo peel were used as host matrices for the Li-S battery. Among them, the S@biochar derived from rice husk delivered the highest specific capacity and the best cycle stability according to electrochemical tests. To further optimize its performance, we prepared a highly porous rice husk derived biochar (HPRH-biochar) using silica gel as the template. The S@HPRH-biochar composite (60% (w, mass fraction) S) enables the homogeneous dispersion of amorphous sulfur in the carbon matrix and its porous structure could effectively suppress the dissolution of the polysulfide. As a result, its electrochemical performance improved, achieving a high initial charge capacity of 1534.1 mAh·g-1 and maintaining a high capacity of 738.7 mAh·g-1 after 100 cycles at 0.2C (1C corresponds to a current density of 1675 mA·g-1). It also gives a capacity of 485.3 mAh·g-1 at 2.0C in the rate capacity test.



Key wordsLi/S battery      Composite      Rice husk      Miscanthus      Fir      Pomelo peel     
Received: 28 December 2016      Published: 09 February 2017
MSC2000:  O646.21  
Fund:  the National Natural Science Foundation of China(21373008);Fundamental Research Funds for the Central Universities, China(20720160124)
Corresponding Authors: Jun-Tao LI     E-mail: jtli@xmu.edu.cn
Cite this article:

Jun-Tao LI,Jiao-Hong WU,Tao ZHANG,Ling HUANG. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery. Acta Physico-Chimica Sinca, 2017, 33(5): 968-975.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702093     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/968

 
 
 
S@biochar with 50% (w) S Initial discharge capacity/(mAh?g-1) Initial Coulombic efficiency/% Discharge capacity after 100 cycles/(mAh?g-1) Coulombic efficiency after 100 cycles/%
RH-biochar1005.5101.6566.896.9
M-biochar824.594.2388.297.0
F-biochar1051.7101.4532.589.8
PP-biochar892.8110.7393.891.7
 
 
 
 
S@biochar cathode Initial discharge capacity/(mAh?g-1) Initial coulombic efficiency/% Discharge capacity after 100 cycles/(mAh?g-1) Coulombic efficiency after 100 cycles/%
RH-biochar with 60% (w) S1362.4111.1417.999.6
HPRH-biochar with 60% (w) S1534.1108.4738.798.3
HPRH-biochar with 70% (w) S1005.4101.6569.097.1
HPRH-biochar with 80% (w) S1299.7107.5486.296.5
 
1 Xin S. ; Gu L. ; Zhao N. H. ; Yin Y. X. ; Zhou L. J. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2012, 134, 18510.
2 Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys.-Chim. Sin. 2016, 32, 1062.
2 杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32, 1062.
3 Ji H. X. ; Ruoff R. S. Acta Phys.-Chim. Sin. 2016, 32, 797.
3 季恒星; RuoffRodney S. 物理化学学报, 2016, 32, 797.
4 Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Edit. 2013, 52, 13186.
5 Su Y. S. ; Manthiram A. Nat. Commun. 2012, 3, 1166.
6 Lin Z. ; Liu Z. C. ; Fu W. J. ; Dudney N. J. ; Liang C. D. Adv. Funct. Mater. 2013, 23, 1064.
7 Zhang S. S. ; Read J. A. J. Power Sources 2012, 200, 77.
8 Suo L. M. ; Hu Y. S. ; Li H. ; Armand M. ; Chen L. Q. Nat. Commun. 2013, 4, 1481.
9 Jeddi K. ; Ghaznavi M. ; Chen P. J. Mater. Chem. A 2013, 1, 2769.
10 Wang L. ; He X. M. ; Li J. J. ; Chen M. ; Gao J. ; Jiang C. Y. Electrochim. Acta 2012, 72, 114.
11 Zheng G. Y. ; Yang Y. ; Cha J. J. ; Hong S. S. ; Cui Y. Nano Lett. 2011, 11, 4462.
12 Guo J. C. ; Xu Y. H. ; Wang C. S. Nano Lett. 2011, 11, 4288.
13 Zhang C. F. ; Wu H. B. ; Yuan C. Z. ; Guo Z. P. ; Lou X. W. Angew. Chem. Int. Edit. 2012, 51, 9592.
14 Chung S. H. ; Manthiram A. J. Mater. Chem. A 2013, 1, 9590.
15 Demir-Cakan R. ; Morcrette M. ; Nouar F. ; Davoisne C. ; Devic T. ; Gonbeau D. ; Dominko R. ; Serre C. ; Ferey G. ; Tarascon J. M. J. Am. Chem. Soc. 2011, 133, 16154.
16 Xi K. ; Cao S. ; Peng X. Y. ; Ducati C. ; Kumar R. V. ; Cheetham A. K. Chem. Commun. 2013, 49, 2192.
17 Stephan A. M. ; Kumar T. P. ; Ramesh R. ; Thomas S. ; Jeong S. K. ; Nahm K. S. Mater. Sci. Eng. A 2006, 430, 132.
18 Fey G. T. K. ; Lee D. C. ; Lin Y. Y. ; Kumar T. P. Synth. Met. 2003, 139, 71.
19 Arrebola J. C. ; Caballero A. ; Hernan L. ; Morales J. ; OlivaresMartin M. ; Gomez-Serrano V. J. Electrochem. Soc. 2010, 157, A791.
20 Xing W. ; Xue J. S. ; Dahn J. R. J. Electrochem. Soc. 1996, 143, 3046.
21 Hwang Y. J. ; Jeong S. K. ; Nahm K. S. ; Shin J. S. ; Stephan A. M. J. Phys. Chem. Solids 2007, 68, 182.
22 Wu X. L. ; Chen L. L. ; Xin S. ; Yin Y. X. ; Guo Y. G. ; Kong Q. S. ; Xia Y. Z. ChemSusChem 2010, 3, 703.
23 Zhang B. ; Xiao M. ; Wang S. J. ; Han D. M. ; Song S. Q. ; Chen G. H. ; Meng Y. Z. ACS Appl. Mater. Interface 2014, 6, 13174.
24 Zhang Y. C. ; You Y. ; Xin S. ; Yin Y. X. ; Zhang J. ; Wang P. ; Zheng X. S. ; Cao F. F. ; Guo Y. G. Nano Energy 2016, 25, 120.
25 Fey G. T. K. ; Chen C. L. J. Power Sources 2001, 97-98, 47.
26 Zhang F. ; Wang K. X. ; Li G. D. ; Chen J. S. Electrochem. Commun. 2009, 11, 130.
27 Zhang J. ; Xiang J. Y. ; Dong Z. M. ; Liu Y. ; Wu Y. S. ; Xu C. M. ; Du G. H. Electrochim. Acta 2014, 116, 146.
28 Tao X. Y. ; Zhang J. T. ; Xia Y. ; Huang H. ; Du J. ; Xiao H. ; Zhang W. K. ; Gan Y. P. J. Mater. Chem. A 2014, 2, 2290.
29 Moreno N. ; Caballero A. ; Hernan L. ; Morales J. Carbon 2014, 70, 241.
30 Li X. L. ; Cao Y. L. ; Qi W. ; Saraf L. V. ; Xiao J. ; Nie Z. M. ; Mietek J. ; Zhang J. G. ; Schwenzer B. ; Liu J. J. Mater. Chem. 2011, 21, 16603.
31 Chen S. R. ; Zhai Y. P. ; Xu G. L. ; Jiang Y. X. ; Zhao D. Y. ; Li J. T. ; Huang L. ; Sun S. G. Electrochim. Acta 2011, 56, 9549.
32 Ye X. M. ; Ma J. ; Hu Y. S. ; Wei H. Y. ; Ye F. F. J. Mater. Chem. A 2016, 4, 775.
33 Tang C. ; Li B. Q. ; Zhang Q. ; Zhu L. ; Wang H. F. ; Shi J. L. ; Wei F. Adv. Funct. Mater. 2016, 26, 577.
34 Mi K. ; Jiang Y. ; Feng J. K. ; Qian Y. T. ; Xiong S. L. Adv. Funct. Mater. 2016, 26, 1571.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 296-302.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[4] Guo-Min LI,Bao-Shun ZHU,Li-Ping LIANG,Yu-Ming TIAN,Bao-Liang LÜ,Lian-Cheng WANG. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1715-1720.
[5] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[6] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[7] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[8] Jiao LI,Zhong CHEN. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 941-948.
[9] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[10] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 435-440.
[11] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[12] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2261-2267.
[13] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.
[14] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[15] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.