Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(5)>> 1033-1042     doi: 10.3866/PKU.WHXB201702101         中文摘要
Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance
RUAN Mao-Mao1, SONG Le-Xin1, WANG Qing-Shan1, XIA Juan2, YANG Zun1, TENG Yue1, XU Zhe-Yuan1
1 Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China;
2 School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236037, Anhui Province, P. R. China
Full text: PDF (3003KB) Export: BibTeX | EndNote (RIS) Supporting Info

This work reports a controlled green synthesis of highly monodisperse bismuth subcarbonate (BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermal route in which deionized water, bismuth nitrate pentahydrate (BNP), and urea were used as the solvent, bismuth source, and carbon source respectively. Trisodium citrate dihydrate (TCD) was used as a coordination agent to fabricate a complex precursor. The structure and morphology of the BS materials can be finely modulated by adjusting the initial concentration ratios of the reactants or the reaction time. The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ ions between a coordination equilibrium and a precipitation equilibrium. Urea played a crucial role (e.g., carbon source, alkaline source, morphology control agent, and crystal growth control agent) in the formation of the BS microstructures. We obtained three kinds of BS crystals with preferred orientations along [001], [110], and [013] by adjusting the concentration of urea. Our synthesis approach has the advantages of low cost, high reaction yields, monodisperse particles, controlled morphologies and orientations, and not requiring the use of organic solvents, templates, surfactants, high phototemperatures, and long reaction times. Particularly, when compared with those reported by other investigators, the micropompon material exhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure (large specific surface area, high efficiency of photoelectric conversion, small interfacial chargetransfer resistance, and active {001} exposed facets). These results indicate a major advance in the controlled green synthesis and the application of inorganic micro-and nano-materials.



Keywords: Bismuth subcarbonate   Controlled green synthesis   Photocatalytic performance   Micropompons   Trisodium citrate dihydrate  
Received: 2016-11-11 Accepted: 2017-02-10 Publication Date (Web): 2017-02-10
Corresponding Authors: SONG Le-Xin, WANG Qing-Shan Email: solexin@ustc.edu.cn;wqs056@mail.ustc.edu.cn

Fund: The project was supported by the Natural Science Foundation of Anhui Province, China (1508085MB30) and Fundamental Research Funds for the Central Universities, China (WK2060190052, WK6030000017).

Cite this article: RUAN Mao-Mao, SONG Le-Xin, WANG Qing-Shan, XIA Juan, YANG Zun, TENG Yue, XU Zhe-Yuan. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017,33 (5): 1033-1042.    doi: 10.3866/PKU.WHXB201702101

(1) (a) Chen, X.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S.Chem. Soc. Rev. 2012, 41, 7909. doi: 10.1039/C2CS35230C
(b) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J
(2) (a) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(b) Li, X. J.; Sheng, J. Y.; Chen, H. H.; Xu, Y. M. ActaPhys. -Chim. Sin. 2015, 31, 540. [李晓金, 盛珈怡, 陈海航, 许宜铭. 物理化学学报, 2015, 31, 540.] doi: 10.3866/PKU.WHXB201501131
(3) (a) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. Int. Ed. 2013, 52, 3621. doi: 10.1002/anie.201210294
(b) Li, J.; Zhang, L.; Li, Y.; Yu, Y. Nanoscale 2013, 6, 167.doi: 10.1039/C3NR05246J
(c) Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Chem. Soc.Rev. 2014, 43, 5276. doi: 10.1039/C4CS00056K
(4) (a) Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W.J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
(b) Singh, M. K.; Ryu, S.; Jang, H. M. Phys. Rev. B, 2005, 72, 132101. doi: 10.1103/PhysRevB.72.132101
(c) Yu, J.; Kudo, A. Adv. Funct. Mater. 2006, 16, 2163.doi: 10.1002/adfm.200500799
(d) He, R. A.; Cao, S.W.; Zhou, P.; Yu, J. G. Chin. J. Catal. 2014, 35, 989. doi: 10.1016/S1872-2067(14)60075-9
(5) (a) Huo, Y.; Hou, R.; Chen, X.; Yin, H.; Gao, Y.; Li, H. J. Mater.Chem. A 2015, 3, 14801. doi: 10.1039/C5TA03279B
(b) Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Appl. Catal. B 2012, 111, 334. doi: 10.1016/j.apcatb.2011.10.016
(c) Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Xu, Y. Dalton Trans. 2011, 40, 5249. doi: 10.1039/C0DT01511C
(d)Wu, Y.; Yuan, B.; Li, M.; Zhang, W. H.; Liu, Y.; Li, C.; Chem. Sci. 2015, 6, 1873. doi: 10.1039/C4SC03229B
(6) (a) Huang, H.; Wang, J.; Dong, F.; Guo, Y.; Tian, N.; Zhang, Y.; Zhang, T. Cryst. Growth Des. 2015, 15, 534. doi: 10.1021/cg501527k
(b) Dong, F.; Ho, W. K.; Lee, S.; Wu, Z.; Fu, M.; Zou, S.; Huang, Y. J. Mater. Chem. 2011, 21, 12428. doi: 10.1039/C1JM11840D
(7) Liang, N.; Zai, J.; Xu, M.; Zhu, Q.; Wei, X.; Qian, X. J. Mater.Chem. A 2014, 2, 4208. doi: 10.1039/C3TA13931J
(8) Tang, J.; Zhao, H.; Li, G.; Lu, Z.; Xiao, S.; Chen, R. Ind. Eng.Chem. Res. 2013, 52, 12604. doi: 10.1021/ie401840x
(9) Cao, X. F.; Zhang, L.; Chen, X. T.; Xue, Z. L. CrystEngComm 2011, 13, 1939. doi: 10.1039/C0CE00324G
(10) Xiong, T.; Dong, F.; Wu, Z. B. RSC Adv. 2014, 4, 56307. doi: 10.1039/C4RA10786A
(11) Xiong, T.; Huang, H.W.; Sun, Y. J.; Dong, F. J. Mater. Chem. A 2015, 3, 6118. doi: 10.1039/C5TA00103J
(12) Dong, F.; Xiong, T.; Sun, Y. J.; Huang, H.W.; Wu, Z. B.J. Mater. Chem. A 2015, 3, 18466. doi: 10.1039/C5TA05099E
(13) Zhao, Z. Y.; Zhou, Y.; Wang, F.; Zhang, K. H.; Yu, S.; Cao, K.ACS Appl. Mater. Interfaces 2014, 7, 730. doi: 10.1021/am507089x
(14) (a) Madhusudan, P.; Zhang, J.; Cheng, B.; Liu, G.CrystEngComm 2013, 15, 231. doi: 10.1039/C2CE26639C
(b) Dong, F.; Lee, S. C.; Wu, Z. B.; Huang, Y.; Fu, M.; Ho, W.K.; Zou, S. C.; Wang, B. J. Hazard. Mater. 2011, 195, 346. doi: 10.1016/j.jhazmat.2011.08.050
(15) Zhao, T.; Zai, J.; Xu, M.; Zou, Q.; Su, Y.; Wang, K.; Qian, X.CrystEngComm 2011, 13, 4010. doi: 10.1039/C1CE05113J
(16) (a) Dong, F.; Sun, Y. J.; Fu, M.; Ho, W. K.; Lee, S. C.; Wu, Z. B.Langmuir 2011, 28, 766. doi: 10.1021/la202752q
(b) Chen, L.; Huang, R.; Yin, S. F.; Luo, S. L.; Au, C. T. Chem.Eng. J. 2012, 193, 123. doi: 10.1016/j.cej.2012.04.023
(17) Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H.; Chen, R. Chem. Eur.J. 2012, 18, 16491. doi: 10.1002/chem.201201989
(18) Dong, F.; Zheng, A. M.; Sun, Y. J.; Fu, M.; Jiang, B. Q.; Ho, W.K.; Lee, S. C.; Wu, Z. B. CrystEngComm 2012, 14, 3534. doi: 10.1039/C2CE06677G
(19) Zheng, Y.; Duan, F.; Chen, M. Q.; Xie, Y. J. Mol. Catal. A:Chem. 2010, 317, 34. doi: 10.1016/j.molcata.2009.10.018
(20) Ma, D.; Huang, S.; Chen, W.; Hu, S.; Shi, F.; Fan, K. J. Phys.Chem. C 2009, 113, 4369. doi: 10.1021/jp810726d
(21) Li, X.; Tang, C. J.; Ai, M.; Dong, L.; Xu, Z. Chem. Mater. 2010, 22, 4879. doi: 10.1021/cm101419w
(22) Peng, S.; Li, L.; Tan, H.; Wu, Y.; Cai, R.; Yu, H.; Huang, X.; Zhu, P.; Ramakrishna, S.; Srinivasan, M. J. Mater. Chem. A 2013, 1, 7630. doi: 10.1039/C3TA10951H
(23) Xiong, M.; Chen, L.; Yuan, Q.; He, J.; Luo, S. L.; Au, C. T.; Yin, S. F. Dalton Trans. 2014, 43, 8331. doi: 10.1039/C4DT00486H
(24) Chen, J.; Guan, M.; Cai, W.; Guo, J.; Xiao, C.; Zhang, G. Phys.Chem. Chem. Phys. 2014, 16, 20909. doi: 10.1039/C4CP02972K
(25) Zhang, D.; Li, J.; Wang, Q.; Wu, Q. J. Mater. Chem. A 2013, 1, 8622. doi: 10.1039/C3TA11390F
(26) (a) Zhang, H.; Ji, Y.; Ma, X.; Xu, J.; Yang, D. Nanotechnology, 2003, 14, 974. doi: 0957-4484/14/9/307
(b) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459. doi: 10.1021/ja992541y
(27) Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P. K.; Zhang, T.; Zhang, Y. ACS Catalysis 2015, 5, 4094. doi: 10.1021/acscatal.5b00444
(28) Teng, Y.; Song, L. X.; Ponchel, A.; Yang, Z. K.; Xia, J. Adv. Mater. 2014, 26, 6238. doi: 10.1002/adma.201402047
(29) Teng, Y.; Song, L. X.; Liu, W.; Xu, Z. Y.; Wang, Q. S.; Ruan, M.M. J. Mater. Chem. C 2016, 4, 3113. doi: 10.1039/C6TC00748A
(30) Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 4473. doi: 10.1021/ja210484t
(31) Lee, W.; Kim, E.; Choi, J.; Lee, K. B. Cryst. Growth Des. 2015, 15, 884. doi: 10.1021/cg5016737
(32) (a)Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X.W. D.Adv. Energy Mater. 2012, 2, 1188. doi: 10.1002/aenm.201200008
(b) Zhan, J. Lin, H. P.; Mou, C. Y. Adv. Mater. 2003, 15, 621.doi: 10.1002/adma.200304600
(33) (a) Ye, Y.; Chen, J.; Ding, Q.; Lin, D.; Dong, R.; Yang, L.; Liu, J. Nanoscale 2013, 5, 5887. doi: 10.1039/C3NR01273E
(b)Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X.W. D. Nanoscale 2012, 4, 2145. doi: 10.1039/C2NR11897A
(34) Xuan, S.; Hao, L.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z.Nanotechnology 2007, 18, 035602. doi: 0957-4484/18/3/035602
(35) Wang, W.; Lu, C.; Ni, Y.; Su, M.; Xu, Z. Appl. Catal. B 2012, 127, 28. doi: 10.1016/j.apcatb.2012.08.002
(36) Mullin, J.W. Crystallization, 3rd ed.; Butterworth-Heinemaan:Oxford, 1997.
(37) Voorhees, P.W. J. Stat. Phys. 1985, 38, 231. doi: 10.1007/BF01017860
(38) (a) Gokulakrishnan, N.; Peru, G.; Rio, S.; Blach, J.; Léger, ;B.; Grosso, D.; Monflier, E.; Ponchel, A. J. Mater. Chem. A 2014, 2, 6641. doi: 10.1039/C4TA00038B
(b) Bleta, R.; Menuel, S.; Léger, B.; Da Costa, A.; Monflier, E.; Ponchel, A. RSC Adv. 2014, 4, 8200. doi: 10.1039/C3RA47765G
(39) Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. doi: 10.1021/ja01269a023
(40) Dong, F.; Liu, H.; Ho, W. K.; Fu, M.; Wu, Z. Chem. Eng. J. 2013, 214, 198. doi: 10.1016/j.cej.2012.10.039
(41) (a) Yang, Z. K.; Song, L. X.; Teng, Y.; Xia, J. J. Mater. Chem. A 2014, 2, 20004. doi: 10.1039/C4TA04232H
(b)Wang, Q. S.; Song, L. X.; Teng, Y.; Xia, J.; Zhao, L.; Ruan, M. M. RSC Adv. 2015, 5, 80853. doi: 10.1039/C5RA16571G
(42) (a) Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. Chem. Commun. 2011, 47, 6951. doi: 10.1039/C1CC11015B
(b) He, R. A.; Cao, S.W.; Yu, J. G. Acta Phys. -Chim.Sin. 2016, 32, 2841. [赫荣安, 曹少文, 余家国. 物理化学学报, 2016, 32, 2841.] doi: 10.3866/PKU.WHXB201611021
(43) (a) Zhang, X.; Wang, X. B.; Wang, L.W.; Wang, W. K.; Long, L. L.; Li, W.W.; Yu, H. Q. ACS Appl. Mater. Interfaces 2014, 6, 7766. doi: 10.1021/am5010392
(b) Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105
(44) Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W.J. Mater. Chem. A 2014, 2, 1677. doi: 10.1039/C3TA14494A
(45) Li, F. T.; Wang, Q.; Ran, J.; Hao, Y. J.; Wang, X. J.; Zhao, D.; Qiao, S. Z. Nanoscale 2015, 7, 1116. doi: 10.1039/C4NR05451B
(46) (a) Hu, J.; Xu, G.; Wang, J.; Lv, J.; Zhang, X.; Zheng, Z.; Xie, T.; Wu, Y. New J. Chem. 2014, 38, 4913. doi: 10.1039/C4NJ00794H
(b) Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. RSC Adv. 2011, 1, 1542. doi: 10.1039/C1RA00335F
(47) (a) Lagunas-Allué, L.; Martínez-Soria, M. T.; Sanz-Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2010, 98, 122. doi: 10.1016/j.apcatb.2010.05.020
(b) Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. J.Mater. Chem. 2012, 22, 7036. doi: 10.1039/C2JM16924J
(48) (a) Kortüm, G.; Braun, W.; Herzog, G. Angew. Chem. Int. Ed. 1963, 2, 333. doi: 10.1002/anie.196303331
(b) Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908. doi: 10.1002/anie.200351577
(49) (a) Li, G.; Long, G.; Chen, W.; Hu, F.; Chen, Y.; Zhang, Q.Asian J. Org. Chem. 2013, 2, 852. doi: 10.1002/ajoc.201300095
(b) Cui, W.; Yuen, J.; Wudl, F. Macromolecules 2011, 44, 7869.doi: 10.1021/ma2017293
(c) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694. doi: 10.1002/adfm.200600171
(50) (a) Fu, H.; Pan, C.; Yao, W.; Zhu, Y. J. Phys. Chem. B 2005, 109, 22432. doi: 10.1021/jp052995j
(b) Zhao, Y.; Tan, X.; Yu, T.; Wang, S. Mater. Lett. 2016, 164, 243. doi: 10.1016/j.matlet.2015.10.155
(51) (a) Guo, Y. X.; Huang, H.W.; He, Y.; Tian, N.; Zhang, T. R.; Chu, P. K.; An, Q.; Zhang, Y. H. Nanoscale 2015, 7, 11702.doi: 10.1039/C5NR02246K
(b) Zhao, Y.; Yu, T.; Tan, X.; Xie, C.; Wang, S. Dalton Trans. 2015, 44, 20475. doi: 10.1039/C5DT03315B

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top