Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 1033-1042    DOI: 10.3866/PKU.WHXB201702101
Article     
Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance
RUAN Mao-Mao1, SONG Le-Xin1, WANG Qing-Shan1, XIA Juan2, YANG Zun1, TENG Yue1, XU Zhe-Yuan1
1 Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China;
2 School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236037, Anhui Province, P. R. China
Download:   PDF(3003KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

This work reports a controlled green synthesis of highly monodisperse bismuth subcarbonate (BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermal route in which deionized water, bismuth nitrate pentahydrate (BNP), and urea were used as the solvent, bismuth source, and carbon source respectively. Trisodium citrate dihydrate (TCD) was used as a coordination agent to fabricate a complex precursor. The structure and morphology of the BS materials can be finely modulated by adjusting the initial concentration ratios of the reactants or the reaction time. The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ ions between a coordination equilibrium and a precipitation equilibrium. Urea played a crucial role (e.g., carbon source, alkaline source, morphology control agent, and crystal growth control agent) in the formation of the BS microstructures. We obtained three kinds of BS crystals with preferred orientations along [001], [110], and [013] by adjusting the concentration of urea. Our synthesis approach has the advantages of low cost, high reaction yields, monodisperse particles, controlled morphologies and orientations, and not requiring the use of organic solvents, templates, surfactants, high phototemperatures, and long reaction times. Particularly, when compared with those reported by other investigators, the micropompon material exhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure (large specific surface area, high efficiency of photoelectric conversion, small interfacial chargetransfer resistance, and active {001} exposed facets). These results indicate a major advance in the controlled green synthesis and the application of inorganic micro-and nano-materials.



Key wordsBismuth subcarbonate      Controlled green synthesis      Photocatalytic performance      Micropompons      Trisodium citrate dihydrate     
Received: 11 November 2016      Published: 10 February 2017
MSC2000:  O643  
Fund:  

The project was supported by the Natural Science Foundation of Anhui Province, China (1508085MB30) and Fundamental Research Funds for the Central Universities, China (WK2060190052, WK6030000017).

Corresponding Authors: SONG Le-Xin, WANG Qing-Shan     E-mail: solexin@ustc.edu.cn;wqs056@mail.ustc.edu.cn
Cite this article:

RUAN Mao-Mao, SONG Le-Xin, WANG Qing-Shan, XIA Juan, YANG Zun, TENG Yue, XU Zhe-Yuan. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance. Acta Phys. -Chim. Sin., 2017, 33(5): 1033-1042.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201702101     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I5/1033

(1) (a) Chen, X.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S.Chem. Soc. Rev. 2012, 41, 7909. doi: 10.1039/C2CS35230C
(b) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J
(2) (a) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(b) Li, X. J.; Sheng, J. Y.; Chen, H. H.; Xu, Y. M. ActaPhys. -Chim. Sin. 2015, 31, 540. [李晓金, 盛珈怡, 陈海航, 许宜铭. 物理化学学报, 2015, 31, 540.] doi: 10.3866/PKU.WHXB201501131
(3) (a) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. Int. Ed. 2013, 52, 3621. doi: 10.1002/anie.201210294
(b) Li, J.; Zhang, L.; Li, Y.; Yu, Y. Nanoscale 2013, 6, 167.doi: 10.1039/C3NR05246J
(c) Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Chem. Soc.Rev. 2014, 43, 5276. doi: 10.1039/C4CS00056K
(4) (a) Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W.J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
(b) Singh, M. K.; Ryu, S.; Jang, H. M. Phys. Rev. B, 2005, 72, 132101. doi: 10.1103/PhysRevB.72.132101
(c) Yu, J.; Kudo, A. Adv. Funct. Mater. 2006, 16, 2163.doi: 10.1002/adfm.200500799
(d) He, R. A.; Cao, S.W.; Zhou, P.; Yu, J. G. Chin. J. Catal. 2014, 35, 989. doi: 10.1016/S1872-2067(14)60075-9
(5) (a) Huo, Y.; Hou, R.; Chen, X.; Yin, H.; Gao, Y.; Li, H. J. Mater.Chem. A 2015, 3, 14801. doi: 10.1039/C5TA03279B
(b) Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Appl. Catal. B 2012, 111, 334. doi: 10.1016/j.apcatb.2011.10.016
(c) Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Xu, Y. Dalton Trans. 2011, 40, 5249. doi: 10.1039/C0DT01511C
(d)Wu, Y.; Yuan, B.; Li, M.; Zhang, W. H.; Liu, Y.; Li, C.; Chem. Sci. 2015, 6, 1873. doi: 10.1039/C4SC03229B
(6) (a) Huang, H.; Wang, J.; Dong, F.; Guo, Y.; Tian, N.; Zhang, Y.; Zhang, T. Cryst. Growth Des. 2015, 15, 534. doi: 10.1021/cg501527k
(b) Dong, F.; Ho, W. K.; Lee, S.; Wu, Z.; Fu, M.; Zou, S.; Huang, Y. J. Mater. Chem. 2011, 21, 12428. doi: 10.1039/C1JM11840D
(7) Liang, N.; Zai, J.; Xu, M.; Zhu, Q.; Wei, X.; Qian, X. J. Mater.Chem. A 2014, 2, 4208. doi: 10.1039/C3TA13931J
(8) Tang, J.; Zhao, H.; Li, G.; Lu, Z.; Xiao, S.; Chen, R. Ind. Eng.Chem. Res. 2013, 52, 12604. doi: 10.1021/ie401840x
(9) Cao, X. F.; Zhang, L.; Chen, X. T.; Xue, Z. L. CrystEngComm 2011, 13, 1939. doi: 10.1039/C0CE00324G
(10) Xiong, T.; Dong, F.; Wu, Z. B. RSC Adv. 2014, 4, 56307. doi: 10.1039/C4RA10786A
(11) Xiong, T.; Huang, H.W.; Sun, Y. J.; Dong, F. J. Mater. Chem. A 2015, 3, 6118. doi: 10.1039/C5TA00103J
(12) Dong, F.; Xiong, T.; Sun, Y. J.; Huang, H.W.; Wu, Z. B.J. Mater. Chem. A 2015, 3, 18466. doi: 10.1039/C5TA05099E
(13) Zhao, Z. Y.; Zhou, Y.; Wang, F.; Zhang, K. H.; Yu, S.; Cao, K.ACS Appl. Mater. Interfaces 2014, 7, 730. doi: 10.1021/am507089x
(14) (a) Madhusudan, P.; Zhang, J.; Cheng, B.; Liu, G.CrystEngComm 2013, 15, 231. doi: 10.1039/C2CE26639C
(b) Dong, F.; Lee, S. C.; Wu, Z. B.; Huang, Y.; Fu, M.; Ho, W.K.; Zou, S. C.; Wang, B. J. Hazard. Mater. 2011, 195, 346. doi: 10.1016/j.jhazmat.2011.08.050
(15) Zhao, T.; Zai, J.; Xu, M.; Zou, Q.; Su, Y.; Wang, K.; Qian, X.CrystEngComm 2011, 13, 4010. doi: 10.1039/C1CE05113J
(16) (a) Dong, F.; Sun, Y. J.; Fu, M.; Ho, W. K.; Lee, S. C.; Wu, Z. B.Langmuir 2011, 28, 766. doi: 10.1021/la202752q
(b) Chen, L.; Huang, R.; Yin, S. F.; Luo, S. L.; Au, C. T. Chem.Eng. J. 2012, 193, 123. doi: 10.1016/j.cej.2012.04.023
(17) Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H.; Chen, R. Chem. Eur.J. 2012, 18, 16491. doi: 10.1002/chem.201201989
(18) Dong, F.; Zheng, A. M.; Sun, Y. J.; Fu, M.; Jiang, B. Q.; Ho, W.K.; Lee, S. C.; Wu, Z. B. CrystEngComm 2012, 14, 3534. doi: 10.1039/C2CE06677G
(19) Zheng, Y.; Duan, F.; Chen, M. Q.; Xie, Y. J. Mol. Catal. A:Chem. 2010, 317, 34. doi: 10.1016/j.molcata.2009.10.018
(20) Ma, D.; Huang, S.; Chen, W.; Hu, S.; Shi, F.; Fan, K. J. Phys.Chem. C 2009, 113, 4369. doi: 10.1021/jp810726d
(21) Li, X.; Tang, C. J.; Ai, M.; Dong, L.; Xu, Z. Chem. Mater. 2010, 22, 4879. doi: 10.1021/cm101419w
(22) Peng, S.; Li, L.; Tan, H.; Wu, Y.; Cai, R.; Yu, H.; Huang, X.; Zhu, P.; Ramakrishna, S.; Srinivasan, M. J. Mater. Chem. A 2013, 1, 7630. doi: 10.1039/C3TA10951H
(23) Xiong, M.; Chen, L.; Yuan, Q.; He, J.; Luo, S. L.; Au, C. T.; Yin, S. F. Dalton Trans. 2014, 43, 8331. doi: 10.1039/C4DT00486H
(24) Chen, J.; Guan, M.; Cai, W.; Guo, J.; Xiao, C.; Zhang, G. Phys.Chem. Chem. Phys. 2014, 16, 20909. doi: 10.1039/C4CP02972K
(25) Zhang, D.; Li, J.; Wang, Q.; Wu, Q. J. Mater. Chem. A 2013, 1, 8622. doi: 10.1039/C3TA11390F
(26) (a) Zhang, H.; Ji, Y.; Ma, X.; Xu, J.; Yang, D. Nanotechnology, 2003, 14, 974. doi: 0957-4484/14/9/307
(b) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459. doi: 10.1021/ja992541y
(27) Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P. K.; Zhang, T.; Zhang, Y. ACS Catalysis 2015, 5, 4094. doi: 10.1021/acscatal.5b00444
(28) Teng, Y.; Song, L. X.; Ponchel, A.; Yang, Z. K.; Xia, J. Adv. Mater. 2014, 26, 6238. doi: 10.1002/adma.201402047
(29) Teng, Y.; Song, L. X.; Liu, W.; Xu, Z. Y.; Wang, Q. S.; Ruan, M.M. J. Mater. Chem. C 2016, 4, 3113. doi: 10.1039/C6TC00748A
(30) Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 4473. doi: 10.1021/ja210484t
(31) Lee, W.; Kim, E.; Choi, J.; Lee, K. B. Cryst. Growth Des. 2015, 15, 884. doi: 10.1021/cg5016737
(32) (a)Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X.W. D.Adv. Energy Mater. 2012, 2, 1188. doi: 10.1002/aenm.201200008
(b) Zhan, J. Lin, H. P.; Mou, C. Y. Adv. Mater. 2003, 15, 621.doi: 10.1002/adma.200304600
(33) (a) Ye, Y.; Chen, J.; Ding, Q.; Lin, D.; Dong, R.; Yang, L.; Liu, J. Nanoscale 2013, 5, 5887. doi: 10.1039/C3NR01273E
(b)Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X.W. D. Nanoscale 2012, 4, 2145. doi: 10.1039/C2NR11897A
(34) Xuan, S.; Hao, L.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z.Nanotechnology 2007, 18, 035602. doi: 0957-4484/18/3/035602
(35) Wang, W.; Lu, C.; Ni, Y.; Su, M.; Xu, Z. Appl. Catal. B 2012, 127, 28. doi: 10.1016/j.apcatb.2012.08.002
(36) Mullin, J.W. Crystallization, 3rd ed.; Butterworth-Heinemaan:Oxford, 1997.
(37) Voorhees, P.W. J. Stat. Phys. 1985, 38, 231. doi: 10.1007/BF01017860
(38) (a) Gokulakrishnan, N.; Peru, G.; Rio, S.; Blach, J.; Léger, ;B.; Grosso, D.; Monflier, E.; Ponchel, A. J. Mater. Chem. A 2014, 2, 6641. doi: 10.1039/C4TA00038B
(b) Bleta, R.; Menuel, S.; Léger, B.; Da Costa, A.; Monflier, E.; Ponchel, A. RSC Adv. 2014, 4, 8200. doi: 10.1039/C3RA47765G
(39) Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. doi: 10.1021/ja01269a023
(40) Dong, F.; Liu, H.; Ho, W. K.; Fu, M.; Wu, Z. Chem. Eng. J. 2013, 214, 198. doi: 10.1016/j.cej.2012.10.039
(41) (a) Yang, Z. K.; Song, L. X.; Teng, Y.; Xia, J. J. Mater. Chem. A 2014, 2, 20004. doi: 10.1039/C4TA04232H
(b)Wang, Q. S.; Song, L. X.; Teng, Y.; Xia, J.; Zhao, L.; Ruan, M. M. RSC Adv. 2015, 5, 80853. doi: 10.1039/C5RA16571G
(42) (a) Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. Chem. Commun. 2011, 47, 6951. doi: 10.1039/C1CC11015B
(b) He, R. A.; Cao, S.W.; Yu, J. G. Acta Phys. -Chim.Sin. 2016, 32, 2841. [赫荣安, 曹少文, 余家国. 物理化学学报, 2016, 32, 2841.] doi: 10.3866/PKU.WHXB201611021
(43) (a) Zhang, X.; Wang, X. B.; Wang, L.W.; Wang, W. K.; Long, L. L.; Li, W.W.; Yu, H. Q. ACS Appl. Mater. Interfaces 2014, 6, 7766. doi: 10.1021/am5010392
(b) Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105
(44) Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W.J. Mater. Chem. A 2014, 2, 1677. doi: 10.1039/C3TA14494A
(45) Li, F. T.; Wang, Q.; Ran, J.; Hao, Y. J.; Wang, X. J.; Zhao, D.; Qiao, S. Z. Nanoscale 2015, 7, 1116. doi: 10.1039/C4NR05451B
(46) (a) Hu, J.; Xu, G.; Wang, J.; Lv, J.; Zhang, X.; Zheng, Z.; Xie, T.; Wu, Y. New J. Chem. 2014, 38, 4913. doi: 10.1039/C4NJ00794H
(b) Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. RSC Adv. 2011, 1, 1542. doi: 10.1039/C1RA00335F
(47) (a) Lagunas-Allué, L.; Martínez-Soria, M. T.; Sanz-Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2010, 98, 122. doi: 10.1016/j.apcatb.2010.05.020
(b) Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. J.Mater. Chem. 2012, 22, 7036. doi: 10.1039/C2JM16924J
(48) (a) Kortüm, G.; Braun, W.; Herzog, G. Angew. Chem. Int. Ed. 1963, 2, 333. doi: 10.1002/anie.196303331
(b) Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908. doi: 10.1002/anie.200351577
(49) (a) Li, G.; Long, G.; Chen, W.; Hu, F.; Chen, Y.; Zhang, Q.Asian J. Org. Chem. 2013, 2, 852. doi: 10.1002/ajoc.201300095
(b) Cui, W.; Yuen, J.; Wudl, F. Macromolecules 2011, 44, 7869.doi: 10.1021/ma2017293
(c) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694. doi: 10.1002/adfm.200600171
(50) (a) Fu, H.; Pan, C.; Yao, W.; Zhu, Y. J. Phys. Chem. B 2005, 109, 22432. doi: 10.1021/jp052995j
(b) Zhao, Y.; Tan, X.; Yu, T.; Wang, S. Mater. Lett. 2016, 164, 243. doi: 10.1016/j.matlet.2015.10.155
(51) (a) Guo, Y. X.; Huang, H.W.; He, Y.; Tian, N.; Zhang, T. R.; Chu, P. K.; An, Q.; Zhang, Y. H. Nanoscale 2015, 7, 11702.doi: 10.1039/C5NR02246K
(b) Zhao, Y.; Yu, T.; Tan, X.; Xie, C.; Wang, S. Dalton Trans. 2015, 44, 20475. doi: 10.1039/C5DT03315B

[1] LIN Xueting, FU Mingli, HE Hui, WU Junliang, CHEN Limin, YE Daiqi, HU Yun, WANG Yifan, WEN William. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] LIU Tian, LI Jun, LIU Weijia, ZHU Yudan, LU Xiaohua. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation:Trans Influence of Boryl Ligands and Nature of Ru-H Bond[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[3] YUAN Mingming, LI Difan, ZHAO Xiuge, MA Wenbao, KONG Kang, NI Wenxiu, GU Qingwen, HOU Zhenshan. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] CHENG Fang, LI Mingyang, HE Wei, WANG Hanqi. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 177-184.
[5] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[6] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[7] LU Pengfei, GOU Yudan, HE Jiuning, LI Ping, ZHANG Changhua, LI Xiangyuan. Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[8] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.
[9] WANG Lan-Yi, YU Xue-Hua, ZHAO Zhen. Synthesis of Inorganic Porous Materials and Their Applications in the Field of Environmental Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2359-2376.
[10] ZHENG Dong, ZHONG Bei-Jing, YAO Tong. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445.
[11] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.
[12] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[13] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[14] YU Hong-Jing, XIA Wen-Wen, SONG Li-Guo, DING Yang, HAO Yu, KANG Li-Qiang, PAN Xin-Xiang, YAO Li. Anharmonic Effect of the Decomposition Reaction in High-Temperature Combustion of Monomethylhydrazine Radicals[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2207-2218.
[15] CHEN Xiao-Yu, WANG Jing-Dong, YU An-Chi. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2184-2190.