Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1033-1042    DOI: 10.3866/PKU.WHXB201702101
ARTICLE     
Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance
Mao-Mao RUAN1,Le-Xin SONG1,*(),Qing-Shan WANG1,*(),Juan XIA2,Zun YANG1,Yue TENG1,Zhe-Yuan XU1
1 Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
2 School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236037, Anhui Province, P. R. China
Download: HTML     PDF(3003KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

This work reports a controlled green synthesis of highly monodisperse bismuth subcarbonate (BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermal route in which deionized water, bismuth nitrate pentahydrate (BNP), and urea were used as the solvent, bismuth source, and carbon source respectively. Trisodium citrate dihydrate (TCD) was used as a coordination agent to fabricate a complex precursor. The structure and morphology of the BS materials can be finely modulated by adjusting the initial concentration ratios of the reactants or the reaction time. The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ ions between a coordination equilibrium and a precipitation equilibrium. Urea played a crucial role (e.g., carbon source, alkaline source, morphology control agent, and crystal growth control agent) in the formation of the BS microstructures. We obtained three kinds of BS crystals with preferred orientations along [001], [110], and [013] by adjusting the concentration of urea. Our synthesis approach has the advantages of low cost, high reaction yields, monodisperse particles, controlled morphologies and orientations, and not requiring the use of organic solvents, templates, surfactants, high phototemperatures, and long reaction times. Particularly, when compared with those reported by other investigators, the micropompon material exhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure (large specific surface area, high efficiency of photoelectric conversion, small interfacial chargetransfer resistance, and active {001} exposed facets). These results indicate a major advance in the controlled green synthesis and the application of inorganic micro-and nano-materials.



Key wordsBismuth subcarbonate      Controlled green synthesis      Photocatalytic performance      Micropompons      Trisodium citrate dihydrate     
Received: 11 November 2016      Published: 10 February 2017
MSC2000:  O643  
Fund:  the Natural Science Foundation of Anhui Province, China(1508085MB30);Fundamental Research Funds for the Central Universities, China(WK2060190052);Fundamental Research Funds for the Central Universities, China(WK6030000017)
Corresponding Authors: Le-Xin SONG,Qing-Shan WANG     E-mail: solexin@ustc.edu.cn;wqs056@mail.ustc.edu.cn
Cite this article:

Mao-Mao RUAN,Le-Xin SONG,Qing-Shan WANG,Juan XIA,Zun YANG,Yue TENG,Zhe-Yuan XU. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance. Acta Physico-Chimica Sinca, 2017, 33(5): 1033-1042.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702101     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1033

 
 
 
 
 
 
 
 
1 (a) Chen, X.; Li, C.; Gr?tzel, M.; Kostecki, R.; Mao, S. S.Chem. Soc. Rev. 2012, 41, 7909. doi: 10.1039/C2CS35230C
1 (b) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J
2 null
3 (a) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. Int. Ed. 2013, 52, 3621. doi: 10.1002/anie.201210294
3 (b) Li, J.; Zhang, L.; Li, Y.; Yu, Y. Nanoscale 2013, 6, 167.doi: 10.1039/C3NR05246J
3 (c) Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Chem. Soc.Rev. 2014, 43, 5276. doi: 10.1039/C4CS00056K
4 (a) Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W.J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
4 (b) Singh, M. K.; Ryu, S.; Jang, H. M. Phys. Rev. B, 2005, 72, 132101. doi: 10.1103/PhysRevB.72.132101
4 (c) Yu, J.; Kudo, A. Adv. Funct. Mater. 2006, 16, 2163.doi: 10.1002/adfm.200500799
4 (d) He, R. A.; Cao, S.W.; Zhou, P.; Yu, J. G. Chin. J. Catal. 2014, 35, 989. doi: 10.1016/S1872-2067(14)60075-9
5 (a) Huo, Y.; Hou, R.; Chen, X.; Yin, H.; Gao, Y.; Li, H. J. Mater.Chem. A 2015, 3, 14801. doi: 10.1039/C5TA03279B
5 (b) Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Appl. Catal. B 2012, 111, 334. doi: 10.1016/j.apcatb.2011.10.016
5 (c) Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Xu, Y. Dalton Trans. 2011, 40, 5249. doi: 10.1039/C0DT01511C
5 (d)Wu, Y.; Yuan, B.; Li, M.; Zhang, W. H.; Liu, Y.; Li, C.; Chem. Sci. 2015, 6, 1873. doi: 10.1039/C4SC03229B
6 (a) Huang, H.; Wang, J.; Dong, F.; Guo, Y.; Tian, N.; Zhang, Y.; Zhang, T. Cryst. Growth Des. 2015, 15, 534. doi: 10.1021/cg501527k
6 (b) Dong, F.; Ho, W. K.; Lee, S.; Wu, Z.; Fu, M.; Zou, S.; Huang, Y. J. Mater. Chem. 2011, 21, 12428. doi: 10.1039/C1JM11840D
7 Liang N. ; Zai J. ; Xu M. ; Zhu Q. ; Wei X. ; Qian X. J. Mater.Chem. A 2014, 2, 4208.
8 Tang J. ; Zhao H. ; Li G. ; Lu Z. ; Xiao S. ; Chen R. Ind. Eng.Chem. Res. 2013, 52, 12604.
9 Cao X. F. ; Zhang L. ; Chen X. T. ; Xue Z. L. CrystEngComm 2011, 13, 1939.
10 Xiong T. ; Dong F. ; Wu Z. B. RSC Adv. 2014, 4, 56307.
11 Xiong T. ; Huang H.W. ; Sun Y. J. ; Dong F. J. Mater. Chem. A 2015, 3, 6118.
12 Dong F. ; Xiong T. ; Sun Y. J. ; Huang H.W. ; Wu Z. B. J. Mater. Chem. A 2015, 3, 18466.
13 Zhao Z. Y. ; Zhou Y. ; Wang F. ; Zhang K. H. ; Yu S. ; Cao K. ACS Appl. Mater. Interfaces 2014, 7, 730.
14 (a) Madhusudan, P.; Zhang, J.; Cheng, B.; Liu, G.CrystEngComm 2013, 15, 231. doi: 10.1039/C2CE26639C
14 (b) Dong, F.; Lee, S. C.; Wu, Z. B.; Huang, Y.; Fu, M.; Ho, W.K.; Zou, S. C.; Wang, B. J. Hazard. Mater. 2011, 195, 346. doi: 10.1016/j.jhazmat.2011.08.050
15 Zhao T. ; Zai J. ; Xu M. ; Zou Q. ; Su Y. ; Wang K. ; Qian X. CrystEngComm 2011, 13, 4010.
16 (a) Dong, F.; Sun, Y. J.; Fu, M.; Ho, W. K.; Lee, S. C.; Wu, Z. B.Langmuir 2011, 28, 766. doi: 10.1021/la202752q
16 (b) Chen, L.; Huang, R.; Yin, S. F.; Luo, S. L.; Au, C. T. Chem.Eng. J. 2012, 193, 123. doi: 10.1016/j.cej.2012.04.023
17 Qin F. ; Li G. ; Wang R. ; Wu J. ; Sun H. ; Chen R. Chem. Eur.J. 2012, 18, 16491.
18 Dong F. ; Zheng A. M. ; Sun Y. J. ; Fu M. ; Jiang B. Q. ; Ho W.K. ; Lee S. C. ; Wu Z. B. CrystEngComm 2012, 14, 3534.
19 Zheng Y. ; Duan F. ; Chen M. Q. ; Xie Y. J. Mol. Catal. A:Chem. 2010, 317, 34.
20 Ma D. ; Huang S. ; Chen W. ; Hu S. ; Shi F. ; Fan K. J. Phys.Chem. C 2009, 113, 4369.
21 Li X. ; Tang C. J. ; Ai M. ; Dong L. ; Xu Z. Chem. Mater. 2010, 22, 4879.
22 Peng S. ; Li L. ; Tan H. ; Wu Y. ; Cai R. ; Yu H. ; Huang X. ; Zhu P. ; Ramakrishna S. ; Srinivasan M. J. Mater. Chem. A 2013, 1, 7630.
23 Xiong M. ; Chen L. ; Yuan Q. ; He J. ; Luo S. L. ; Au C. T. ; Yin S. F. Dalton Trans. 2014, 43, 8331.
24 Chen J. ; Guan M. ; Cai W. ; Guo J. ; Xiao C. ; Zhang G. Phys.Chem. Chem. Phys. 2014, 16, 20909.
25 Zhang D. ; Li J. ; Wang Q. ; Wu Q. J. Mater. Chem. A 2013, 1, 8622.
26 (a) Zhang, H.; Ji, Y.; Ma, X.; Xu, J.; Yang, D. Nanotechnology, 2003, 14, 974. doi: 0957-4484/14/9/307
26 (b) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459. doi: 10.1021/ja992541y
27 Huang H. ; Li X. ; Wang J. ; Dong F. ; Chu P. K. ; Zhang T. ; Zhang Y. ACS Catalysis 2015, 5, 4094.
28 Teng Y. ; Song L. X. ; Ponchel A. ; Yang Z. K. ; Xia J. Adv. Mater. 2014, 26, 6238.
29 Teng Y. ; Song L. X. ; Liu W. ; Xu Z. Y. ; Wang Q. S. ; Ruan M. M. J. Mater. Chem. C 2016, 4, 3113.
30 Jiang J. ; Zhao K. ; Xiao X. ; Zhang L. J. Am. Chem. Soc. 2012, 134, 4473.
31 Lee W. ; Kim E. ; Choi J. ; Lee K. B. Cryst. Growth Des. 2015, 15, 884.
32 (a)Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X.W. D.Adv. Energy Mater. 2012, 2, 1188. doi: 10.1002/aenm.201200008
32 (b) Zhan, J. Lin, H. P.; Mou, C. Y. Adv. Mater. 2003, 15, 621.doi: 10.1002/adma.200304600
33 (a) Ye, Y.; Chen, J.; Ding, Q.; Lin, D.; Dong, R.; Yang, L.; Liu, J. Nanoscale 2013, 5, 5887. doi: 10.1039/C3NR01273E
33 (b)Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X.W. D. Nanoscale 2012, 4, 2145. doi: 10.1039/C2NR11897A
34 Xuan S. ; Hao L. ; Jiang W. ; Gong X. ; Hu Y. ; Chen Z. Nanotechnology 2007, 18, 035602.
35 Wang W. ; Lu C. ; Ni Y. ; Su M. ; Xu Z. Appl. Catal. B 2012, 127, 28.
36 Mullin, J. W. Crystallization, 3rd ed. ; Butterworth-Heinemaan: Oxford, 1997.
37 Voorhees P. W. J. Stat. Phys. 1985, 38, 231.
38 (a) Gokulakrishnan, N.; Peru, G.; Rio, S.; Blach, J.; Léger, ;B.; Grosso, D.; Monflier, E.; Ponchel, A. J. Mater. Chem. A 2014, 2, 6641. doi: 10.1039/C4TA00038Bb(b) Bleta, R.; Menuel, S.; Léger, B.; Da Costa, A.; Monflier, E.; Ponchel, A. RSC Adv. 2014, 4, 8200. doi: 10.1039/C3RA47765G
39 Brunauer S. ; Emmett P. H. ; Teller E. J. Am. Chem. Soc. 1938, 60, 309.
40 Dong F. ; Liu H. ; Ho W. K. ; Fu M. ; Wu Z. Chem. Eng. J. 2013, 214, 198.
41 (a) Yang, Z. K.; Song, L. X.; Teng, Y.; Xia, J. J. Mater. Chem. A 2014, 2, 20004. doi: 10.1039/C4TA04232H
41 (b)Wang, Q. S.; Song, L. X.; Teng, Y.; Xia, J.; Zhao, L.; Ruan, M. M. RSC Adv. 2015, 5, 80853. doi: 10.1039/C5RA16571G
42 null
43 (a) Zhang, X.; Wang, X. B.; Wang, L.W.; Wang, W. K.; Long, L. L.; Li, W.W.; Yu, H. Q. ACS Appl. Mater. Interfaces 2014, 6, 7766. doi: 10.1021/am5010392
43 (b) Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105
44 Yu Y. ; Cao C. ; Liu H. ; Li P. ; Wei F. ; Jiang Y. ; Song W. J. Mater. Chem. A 2014, 2, 1677.
45 Li F. T. ; Wang Q. ; Ran J. ; Hao Y. J. ; Wang X. J. ; Zhao D. ; Qiao S. Z. Nanoscale 2015, 7, 1116.
46 (a) Hu, J.; Xu, G.; Wang, J.; Lv, J.; Zhang, X.; Zheng, Z.; Xie, T.; Wu, Y. New J. Chem. 2014, 38, 4913. doi: 10.1039/C4NJ00794H
46 (b) Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. RSC Adv. 2011, 1, 1542. doi: 10.1039/C1RA00335F
47 (a) Lagunas-Allué, L.; Martínez-Soria, M. T.; Sanz-Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2010, 98, 122. doi: 10.1016/j.apcatb.2010.05.020
47 (b) Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. J.Mater. Chem. 2012, 22, 7036. doi: 10.1039/C2JM16924J
48 (a) Kortüm, G.; Braun, W.; Herzog, G. Angew. Chem. Int. Ed. 1963, 2, 333. doi: 10.1002/anie.196303331
48 (b) Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908. doi: 10.1002/anie.200351577
49 (a) Li, G.; Long, G.; Chen, W.; Hu, F.; Chen, Y.; Zhang, Q.Asian J. Org. Chem. 2013, 2, 852. doi: i
49 (b) Cui, W.; Yuen, J.; Wudl, F. Macromolecules 2011, 44, 7869.doi: 10.1021/ma2017293
49 (c) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694. doi: 10.1002/adfm.200600171
50 (a) Fu, H.; Pan, C.; Yao, W.; Zhu, Y. J. Phys. Chem. B 2005, 109, 22432. doi: 10.1021/jp052995j
50 (b) Zhao, Y.; Tan, X.; Yu, T.; Wang, S. Mater. Lett. 2016, 164, 243. doi: 10.1016/j.matlet.2015.10.155
51 (a) Guo, Y. X.; Huang, H.W.; He, Y.; Tian, N.; Zhang, T. R.; Chu, P. K.; An, Q.; Zhang, Y. H. Nanoscale 2015, 7, 11702.doi: 10.1039/C5NR02246K
51 (b) Zhao, Y.; Yu, T.; Tan, X.; Xie, C.; Wang, S. Dalton Trans. 2015, 44, 20475. doi: 10.1039/C5DT03315B
[1] GAO Yunnan, LIU Shizhen, ZHAO Zhenqing, TAO Hengcong, SUN Zhenyu. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[2] ZHANG Fan, REN Zhe, ZHONG Shenghui, YAO Mingfa, PENG Zhijun. Role of Low-Temperature Fuel Chemistry on Turbulent Flame Propagation[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[3] ZHANG Yujing, DAI Xingchao, WANG Hongli, SHI Feng. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[4] YANG Lina, HUANG Li, SONG Xueyang, HE Wenxue, JIANG Yong, SUN Zhihu, WEI Shiqiang. In-situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[5] YIN Di, QIU Zongyang, LI Pai, LI Zhenyu. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[6] LU Xiuli, HAN Yingying, LU Tongbu. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[7] LIN Xueting, FU Mingli, HE Hui, WU Junliang, CHEN Limin, YE Daiqi, HU Yun, WANG Yifan, WEN William. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[8] ZHOU Zhihua, XIA Shumei, HE Liangnian. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[9] GUO Junjiang, TANG Shiyun, LI Rui, TAN Ningxin. Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[10] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[11] CHEN Bihua, ELAGEED Elnazeer H. M., ZHANG Yongya, GAO Guohua. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[12] XI Shuanghui, WANG Fan, LI Xiangyuan. First-and Second-Order Local and Global Sensitivity Analyses on Ignition Delay Times of Four Typical Fuels[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[13] LIU Zhiming, LIU Guoliang, HONG Xinlin. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[14] DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[15] REN Chun-Xing, LI Xiao-Xia, GUO Li. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.