Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 1010-1016    DOI: 10.3866/PKU.WHXB201702102
Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces
CHEN Ai-Xi1, WANG Hong2, DUAN Sai3, ZHANG Hai-Ming1, XU Xin4, CHI Li-Feng1
1 Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu Province, P. R. China;
2 Physikalisches Institut, Universität Münster, Wilhelm-Klemm Strasse 10, 48149 Münster, Germany;
3 Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden;
4 Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
Download:   PDF(1824KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Functional solid substrates modified by self-assembled monolayers (SAMs) have potential applications in biosensors, chromatography, and biocompatible materials. The potential-induced phase transition of N-isobutyryl-L-cysteine (L-NIBC) SAMs on Au(111) surfaces was investigated by in-situ electrochemical scanning tunneling microscopy (EC-STM) in 0.1 mol·L-1 H2SO4 solution. The NIBC SAMs with two distinct structures (α phase and β phase) can be prepared by immersing the Au(111) substrate in pure NIBC aqueous solution and NIBC solution controlled by phosphate buffer at pH 7, respectively. The as-prepared α phase and β phase of NIBC SAMs show various structural changes under the control of electrochemical potentials of the Au(111) in H2SO4 solution. The α phase NIBC SAMs exhibit structural changes from ordered to disordered structures with potential changes from 0.7 V (vs saturated calomel electrode, SCE) to 0.2 V. However, the β phase NIBC SAMs undergo structural changes from disordered structures (E < 0.3 V) to γ phase (0.4 V < E < 0.5 V) and finally to the β phase (0.5 V < E < 0.7 V). EC-STM images also indicate that the phase transition from the β phase NIBC SAMs to the α phase occurs at positive potential. Combined with density functional theory (DFT) calculations, the phase transition from the β phase to the α phase is explained by the potential-induced break of bonding interactions between ―COO and the negatively charged gold surfaces.

Key wordsSelf-assembly      Thiol      Phase transition      Potential-induced      Electrochemical scanning tunneling microscopy      Density functional theory     
Received: 19 December 2016      Published: 10 February 2017
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (91227201, 21527805).

Corresponding Authors: ZHANG Hai-Ming, CHI Li-Feng     E-mail:;
Cite this article:

CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.

URL:     OR

(1) Malem, F.; Mandler, D. Anal. Chem. 1993, 65, 37. doi: 10.1021/ac00049a009
(2) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 10714. doi: 10.1021/ja00076a032
(3) Gardner, T. J.; Frisbie, C. D.; Wrighton, M. S. J. Am. Chem. Soc. 1995, 117, 6927. doi: 10.1021/ja00131a015
(4) Dong, D.; Zhang, S.; Zhu, T.; Gan, L. B.; Liu, Z. F. ActaPhys. -Chim. Sin. 2001, 17 (11), 978. [董栋, 张生, 朱涛, 甘良兵, 刘忠范. 物理化学学报, 2001, 17 (11), 978.]doi: 10.3866/PKU.WHXB20011104
(5) Jiang, P.; Cheng, G. J.; Zhang, H. L.; Cai, S. M.; Liu, Z. F. ActaPhys. -Chim. Sin. 1998, 14 (7), 609. [江鹏, 程广军, 张浩力, 蔡生民, 刘忠范. 物理化学学报, 1998, 14 (7), 609.]doi: 10.3866/PKU.WHXB19980707
(6) Zhou, X. S.; Xu, X. M.; Zhong, H. P.; Long, L. S.; Huang, R.B.; Xie, Z. X.; Zheng, L. S.; Mao, B.W. Acta Phys. -Chim. Sin. 2005, 21 (9), 949. [周小顺, 徐晓蜜, 钟慧萍, 龙腊生, 黄荣斌, 谢兆雄, 郑兰荪, 毛秉伟. 物理化学学报, 2005, 21 (9), 949.]doi: 10.3866/PKU.WHXB20050901
(7) (a) Gan, H.; Tang, K. J.; Sun, T. L.; Hirtz, M.; Li, Y.; Chi, L. F.; Butz, S.; Fuchs, H. Angew. Chem. Int. Ed. 2009, 48, 5282.doi: 10.1002/anie.200806295
(b) Sun, T. L.; Han, D.; Riehemann, K.; Chi, L. F.; Fuchs, H.J. Am. Chem. Soc. 2007, 129, 1496. doi: 10.1021/ja0686155
(8) Zhu, F.; Yan, J.W.; Sun, C. F.; Zhang, X.; Mao, B.W.J. Electroanal. Chem. 2010, 640, 51. doi: 10.1016/j.jelechem.2010.01.006
(9) Zhang, J. D.; Welinder, A. C.; Chi, Q. J.; Ulstrup, J. Phys.Chem. Chem. Phys. 2011, 13, 5526. doi: 10.1039/c0cp02183k
(10) Costa, D.; Pradier, C. M.; Tielens, F.; Savio, L. Surf. Sci. Rep. 2015, 70, 449. doi: 10.1016/j.surfrep.2015.10.002
(11) Yan, J.; Ouyang, R.; Jensen, P. S.; Ascic, E.; Tanner, D.; Mao, B.; Zhang, J.; Tang, C.; Hush, N. S.; Ulstrup, J.; Reimers, J. R.J. Am. Chem. Soc. 2014, 136, 17087. doi: 10.1021/ja508100c
(12) Gao, B.; Kuang, Y. M.; Liao, Y.; Dong, Z. C. Chin. J. Chem.Phys. 2012, No. 2, 231. doi: 10.1088/1674-0068/25/02/231-234
(13) Vericat, C.; Vela, M. E.; Benitez, G.; Carrob, P.; Salvarezza, R.C. Chem. Soc. Rev. 2010, 39, 1805. doi: 10.1039/b907301a
(14) Pensa, E.; Cortes, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benitez, G.; Rubert, A. A.; Salvarezza, R. C.Acc. Chem. Res. 2012, 45, 1183. doi: 10.1021/ar200260p
(15) De Leener, G.; Evoung-Evoung, F.; Lascaux, A.; Mertens, J.; Porras-Gutierrez, A. G.; Le Poul, N.; Lagrost, C.; Over, D.; Leroux, Y. R.; Reniers, F.; Hapiot, P.; Le Mest, Y.; Jabin, I.; Reinaud, O. J. Am. Chem. Soc. 2016, 138, 12841. doi: 10.1021/jacs.6b05317
(16) Zhang, H. M.; Li, Y.; Xu, X.; Sun, T. L.; Fuchs, H.; Chi, L. F.Langmuir 2010, 26, 7343. doi: 10.1021/la904237d
(17) Poirier, G. E.; Pylant, E. D. Science 1996, 272, 1145.doi: 10.1126/science.272.5265.1145
(18) Poirier, G. E.; Fitts, W. P.; White, J. M. Langmuir 2001, 17, 1176. doi: 10.1021/la0012788
(19) Qian, Y. L.; Yang, G. H.; Yu, J. J.; Jung, T. A.; Liu, G. Y.Langmuir 2003, 19, 6056. doi: 10.1021/la0267701
(20) Cyganik, P.; Buck, M.; Strunskus, T.; Shaporenko, A.; Witte, G.; Zharnikov, M.; Woll, C. J. Phys. Chem. C 2007, 111, 16909.doi: 10.1021/jp073979k
(21) Hagenstrom, H.; Schneeweiss, M. A.; Kolb, D. M. Langmuir 1999, 15, 2435. doi: 10.1021/ja00076a032
(22) (a) Schweizer, M.; Hagenstrom, H.; Kolb, D. M. Surf. Sci. 2001, 490, L627. doi: 10.1016/S0039-6028(01)01377-2
(b) Schweizer, M.; Manolova, M.; Kolb, D. M. Surf. Sci. 2008, 602, 3303. doi: 10.1016/j.susc.2008.09.009
(23) Baunach, T.; Ivanova, V.; Scherson, D. A.; Kolb, D. M.Langmuir 2004, 20, 2797. doi: 10.1021/la035389t
(24) Dai, Y. G.; Meier, C.; Ziener, U.; Landfester, K.; Taubert, C.; Kolb, D. M. Langmuir 2007, 23, 11058. doi: 10.1021/la701479r
(25) Zhou, W. P.; Baunach, T.; Ivanova, V.; Kolb, D. M. Langmuir 2004, 20, 4590. doi: 10.1021/la049903m
(26) Seo, K.; Borguet, E. J. Phys. Chem. C 2007, 111, 6335.doi: 10.1021/jp064493r
(27) Zhang, J. D.; Demetriou, A.; Welinder, A. C.; Albrecht, T.; Nichols, R. J.; Ulstrup, J. Chem. Phys. 2005, 319, 210.doi: 10.1016/j.chemphys.2005.04.019
(28) Su, G. J.; Zhang, H. M.; Wan, L. J.; Bai, C. L.; Wandlowski, T.J. Phys. Chem. B 2004, 108, 1931. doi: 10.1021/jp035095g
(29) Mayer, D.; Dretschkow, T.; Ataka, K.; Wandlowski, T.J. Electroanal. Chem. 2002, 524, 20. doi: 10.1016/S0022-0728(01)00754-9

[1] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[2] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[3] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[4] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[5] CEDILLO Andrés, CORTONA Pietro. Effect of Pressure on Cesium Iodide Band Gap[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 208-212.
[6] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[7] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[8] ZHANG Hong-Zhi, ZHANG Zhi-Qing, WANG Fang, ZHOU Ting, WANG Xiu-Feng, ZHANG Guo-Dong, LIU Ting-Ting, LIU Shu-Zhen. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[9] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[10] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[11] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[13] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[14] ZHANG Zhen, XIE Wen-Jun, YANG Yi Isaac, SUN Geng, GAO Yi-Qin. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[15] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 582-589.