Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1010-1016    DOI: 10.3866/PKU.WHXB201702102
ARTICLE     
Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces
Ai-Xi CHEN1,Hong WANG2,Sai DUAN3,Hai-Ming ZHANG1,*(),Xin XU4,Li-Feng CHI1,*()
1 Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu Province, P. R. China
2 Physikalisches Institut, Universit?t Münster, Wilhelm-Klemm Strasse 10, 48149 Münster, Germany
3 Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
4 Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
Download: HTML     PDF(1824KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Functional solid substrates modified by self-assembled monolayers (SAMs) have potential applications in biosensors, chromatography, and biocompatible materials. The potential-induced phase transition of N-isobutyryl-L-cysteine (L-NIBC) SAMs on Au (111) surfaces was investigated by in-situ electrochemical scanning tunneling microscopy (EC-STM) in 0.1 mol·L-1 H2SO4 solution. The NIBC SAMs with two distinct structures (α phase and β phase) can be prepared by immersing the Au (111) substrate in pure NIBC aqueous solution and NIBC solution controlled by phosphate buffer at pH 7, respectively. The as-prepared α phase and β phase of NIBC SAMs show various structural changes under the control of electrochemical potentials of the Au (111) in H2SO4 solution. The α phase NIBC SAMs exhibit structural changes from ordered to disordered structures with potential changes from 0.7 V (vs saturated calomel electrode, SCE) to 0.2 V. However, the β phase NIBC SAMs undergo structural changes from disordered structures (E < 0.3 V) to γ phase (0.4 V < E < 0.5 V) and finally to the β phase (0.5 V < E < 0.7 V). EC-STM images also indicate that the phase transition from the β phase NIBC SAMs to the α phase occurs at positive potential. Combined with density functional theory (DFT) calculations, the phase transition from the β phase to the α phase is explained by the potential-induced break of bonding interactions between ——COO- and the negatively charged gold surfaces.



Key wordsSelf-assembly      Thiol      Phase transition      Potential-induced      Electrochemical scanning tunneling microscopy      Density functional theory     
Received: 19 December 2016      Published: 10 February 2017
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(91227201);the National Natural Science Foundation of China(21527805)
Corresponding Authors: Hai-Ming ZHANG,Li-Feng CHI     E-mail: hmzhang@suda.edu.cn;chilf@suda.edu.cn
Cite this article:

Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702102     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1010

 
 
 
 
1 Malem F. ; Mandler D. Anal. Chem. 1993, 65, 37.
2 Prime K. L. ; Whitesides G. M. J. Am. Chem. Soc. 1993, 115, 10714.
3 Gardner T. J. ; Frisbie C. D. ; Wrighton M. S. J. Am. Chem. Soc. 1995, 117, 6927.
4 Dong D. ; Zhang S. ; Zhu T. ; Gan L. B. ; Liu Z. F. ActaPhys.-Chim. Sin. 2001, 17 (11), 978.
4 董栋; 张生; 朱涛; 甘良兵; 刘忠范. 物理化学学报, 2001, 17 (11), 978.
5 Jiang P. ; Cheng G. J. ; Zhang H. L. ; Cai S. M. ; Liu Z. F. ActaPhys.-Chim. Sin. 1998, 14 (7), 609.
5 江鹏; 程广军; 张浩力; 蔡生民; 刘忠范. 物理化学学报, 1998, 14 (7), 609.
6 Zhou X. S. ; Xu X. M. ; Zhong H. P. ; Long L. S. ; Huang R.B. ; Xie Z. X. ; Zheng L. S. ; Mao B.W. Acta Phys.-Chim. Sin. 2005, 21 (9), 949.
6 周小顺; 徐晓蜜; 钟慧萍; 龙腊生; 黄荣斌; 谢兆雄; 郑兰荪; 毛秉伟. 物理化学学报, 2005, 21 (9), 949.
7 (a) Gan, H. ; Tang, K. J. ; Sun, T. L. ; Hirtz, M. ; Li, Y. ; Chi, L. F. ; Butz, S. ; Fuchs, H. Angew. Chem. Int. Ed. 2009, 48, 5282. doi: 10.1002/anie.200806295
8 Zhu F. ; Yan J.W. ; Sun C. F. ; Zhang X. ; Mao B.W. J. Electroanal. Chem. 2010, 640, 51.
9 Zhang J. D. ; Welinder A. C. ; Chi Q. J. ; Ulstrup J. Phys. Chem. Chem. Phys. 2011, 13, 5526.
10 Costa D. ; Pradier C. M. ; Tielens F. ; Savio L. Surf. Sci. Rep. 2015, 70, 449.
11 Yan J. ; Ouyang R. ; Jensen P. S. ; Ascic E. ; Tanner D. ; Mao B. ; Zhang J. ; Tang C. ; Hush N. S. ; Ulstrup J. ; Reimers J. R. J. Am. Chem. Soc. 2014, 136, 17087.
12 Gao B. ; Kuang Y. M. ; Liao Y. ; Dong Z. C. Chin. J. Chem.Phys. 2012, No. 2, 231.
13 Vericat C. ; Vela M. E. ; Benitez G. ; Carrob P. ; Salvarezza R.C. Chem. Soc. Rev. 2010, 39, 1805.
14 Pensa E. ; Cortes E. ; Corthey G. ; Carro P. ; Vericat C. ; Fonticelli M. H. ; Benitez G. ; Rubert A. A. ; Salvarezza R. C. Acc. Chem. Res. 2012, 45, 1183.
15 De Leener G. ; Evoung-Evoung F. ; Lascaux A. ; Mertens J. ; Porras-Gutierrez A. G. ; Le Poul N. ; Lagrost C. ; Over D. ; Leroux Y. R. ; Reniers F. ; Hapiot P. ; Le Mest Y. ; Jabin I. ; Reinaud O. J. Am. Chem. Soc. 2016, 138, 12841.
16 Zhang H. M. ; Li Y. ; Xu X. ; Sun T. L. ; Fuchs H. ; Chi L. F. Langmuir 2010, 26, 7343.
17 Poirier G. E. ; Pylant E. D. Science 1996, 272, 1145.
18 Poirier G. E. ; Fitts W. P. ; White J. M. Langmuir 2001, 17, 1176.
19 Qian Y. L. ; Yang G. H. ; Yu J. J. ; Jung T. A. ; Liu G. Y. Langmuir 2003, 19, 6056.
20 Cyganik P. ; Buck M. ; Strunskus T. ; Shaporenko A. ; Witte G. ; Zharnikov M. ; Woll C. J. Phys. Chem. C 2007, 111, 16909.
21 Hagenstrom H. ; Schneeweiss M. A. ; Kolb D. M. Langmuir 1999, 15, 2435.
22 (a) Schweizer, M. ; Hagenstrom, H. ; Kolb, D. M. Surf. Sci. 2001, 490, L627. doi: 10.1016/S0039-6028(01)01377-2
23 Baunach T. ; Ivanova V. ; Scherson D. A. ; Kolb D. M. Langmuir 2004, 20, 2797.
24 Dai Y. G. ; Meier C. ; Ziener U. ; Landfester K. ; Taubert C. ; Kolb D. M. Langmuir 2007, 23, 11058.
25 Zhou W. P. ; Baunach T. ; Ivanova V. ; Kolb D. M. Langmuir 2004, 20, 4590.
26 Seo K. ; Borguet E. J. Phys. Chem. C 2007, 111, 6335.
27 Zhang J. D. ; Demetriou A. ; Welinder A. C. ; Albrecht T. ; Nichols R. J. ; Ulstrup J. Chem. Phys. 2005, 319, 210.
28 Su G. J. ; Zhang H. M. ; Wan L. J. ; Bai C. L. ; Wandlowski T. J. Phys. Chem. B 2004, 108, 1931.
29 Mayer D. ; Dretschkow T. ; Ataka K. ; Wandlowski T. J. Electroanal. Chem. 2002, 524, 20.
[1] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[2] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[3] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[4] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[5] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[7] Andrés CEDILLO,Pietro CORTONA. Effect of Pressure on Cesium Iodide Band Gap[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 208-212.
[8] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[9] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[10] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1520-1532.
[11] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[12] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[13] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[14] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.
[15] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.