Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 949-959    DOI: 10.3866/PKU.WHXB201702152
ARTICLE     
The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation
Ting-Ting ZHOU1,*(),Hua-Jie SONG1,Feng-Lei HUANG2,*()
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, P. R. China
2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
Download: HTML     PDF(1840KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The slip and anisotropy of 2, 4, 6-triamino-1, 3, 5-trinitrobenzene (TATB) crystal under shock loading along various directions were investigated using molecular dynamics simulation combined with reactive force field (ReaxFF). The shock strength was approximately 10 GPa, and seven shock orientations normal to the (101), (111), (011), (110), (010), (100), and (001) crystal planes were considered. For these shock directions, the slip systems that are likely to be activated are predicted to be on the {001} plane, whereas others that could not be activated exhibit large shear stress barriers. These slip characteristics are consistent with the layered structure of TATB crystal along the c axis and the planar structure of TATB molecule. The most favorable slip systems are suggested to be (101)/{001}<100>, (111)/{001}<010>, (011)/{001}<010>, (110)/{001}<010>, (010)/{001}<1$\bar 1$0>, (100)/{001}<120>, and (001)/{001}<010>. TATB crystal exhibits anisotropic response to shock loading, that is, the shear stress, energy, temperature, and chemical reactivity during shear deformation depend on shock direction. For the (100) and (001) shock planes, the shear stress barrier is relatively high and lasts for a long time, leading to fast energy accumulation and temperature increment, which, in turn, increase the chemical reactivity. In contrast, for the (101) and (111) shock planes, the small shear stress barrier results in slow energy accumulation and temperature rise and, thus, low chemical reactivity. The (011), (110), and (010) shock planes exhibit intermediate responses. The sensitivity of the seven shock planes can be ranked as follows: (101), (111)<(011), (110), (010)<(100), (001). This study provides microscale insight into the response mechanisms and structure-property relationship of TATB crystal under dynamic loading and may facilitate designing explosives with high energy but low sensitivity.



Key wordsTATB      Shock      Slip      Anisotropy      ReaxFF      Molecular dynamics     
Received: 10 October 2016      Published: 15 February 2017
MSC2000:  O642  
Fund:  the National Natural Science Foundation of China(11402031);the National Natural Science Foundation of China(11372053);the National Natural Science Foundation of China(11221202)
Corresponding Authors: Ting-Ting ZHOU,Feng-Lei HUANG     E-mail: zhou_tingting@iapcm.ac.cn;huangfl@bit.edu.cn
Cite this article:

Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation. Acta Physico-Chimica Sinca, 2017, 33(5): 949-959.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702152     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/949

Fig 1 Crystal and molecular structures of TATB The different colors represent different atom types: gray represents carbon atom, blue nitrogen atom, red oxygen atom, and white hydrogen atom. color online
Shock planeCompression rate/%p/GPapxx/GPapyy/GPapzz/GPapxy/GPapxz/GPapyz/GPa
(101)159.13612.1167.4027.889-0.668-1.5070.748
(111)169.05612.4186.5718.1792.250-3.276-1.555
(011)1510.6819.24811.31311.4822.592-0.310-1.021
(110)1410.72013.1318.04210.9863.225-1.264-0.980
(010)139.8409.4529.77610.2923.192-1.164-1.465
(100)159.55812.1557.3239.197-0.689-0.0961.271
(001)189.9105.5166.85917.3541.3772.1992.137
Table 1 Compression rate for each shock direction and stress tensor for compressed systems after NVT-MD optimization
Shock plane Slip system RSS/GPa
(001) {201}<10$\bar 2$> 6.423
{301}<10$\bar 3$> 6.071
{$\bar 1$01}<101> 5.913
{401}<10$\bar 4$> 5.561
{021}<01$\bar 2$> 5.447
{031}<01$\bar 3$> 5.239
{011}<01$\bar 1$> 5.062
{041}<01$\bar 4$> 4.968
{001}<120> 2.061
{001}<010> 1.826
{001}<110> 1.742
Table 2 The RSS values for the potential slip systems along the shock direction normal to (001) plane
Shock planeSlip systemτ0/GPaτbarrier/GPaT/Ktreaction/psNTATB/%
(001){201}<10$\bar 2$>6.47615.85918600.850
{301}<10$\bar 3$>5.96911.38419660.950
{$\bar 1$01}<101>5.9597.58014130.903.61
{401}<10$\bar 4$>5.5689.72718010.950
{021}<01$\bar 2$>5.29210.58816190.800
{031}<01$\bar 3$>4.98213.64615910.850
{011}<01$\bar 1$>4.7238.16616461.050.26
{041}<01$\bar 4$>4.94913.29018210.800
{001}<120>2.0652.5717845.4597.45
{001}<010>1.9001.6936925.6098.73
{001}<110>1.8512.7947274.9097.22
Table 3 MD Simulation results for the potential slip systems along the shock direction normal to (001) plane
Fig 2 Time evolutions of shear stress, potential energy, temperature, and the ratio of undecomposed TATB for the five representative potential slip systems along the shock direction normal to (001) plane color online
Fig 3 Schematic illustration of molecule contacts for various slip systems in TATB crystal during shear process for (001) shock plane (a) slip system {201}<10$\bar 2$>; (b) slip system {011}<01$\bar 1$>, (c) slip system {001}<010>. The crystal structures are the ones after redefinition. The different colors represent different atom types: gray represents carbon atom, blue nitrogen atom, red oxygen atom, and white hydrogen atom. The orange arrows indicate the slip systems. color online
Shock planeSlip systemτ0/GPaτbarrier/GPaT/Ktreaction/psNTATB/%Sensitivity
(101) {001}<120>0.1790.753(0.813/1.033)459 100
{001}<110>0.1540.454(0.908/1.015)482 100
{001}<100>0.1190.406(1.020)470 100I
(111){001}<010>0.3450.850502 100I
{001}<120>0.360.905494899.92
{001}<110>0.2940.92(0.797)532899.94
(011){001}<110>0.2162.017(1.052/1.171)576899.94
{001}<120>0.2341.637(1.617/0.875)540 100
{001}<010>0.1340.681(0.538/0.712)552 100M
(110){001}<100>0.8350.423(0.769/0.775)6174.198.76
{001}<010>0.3090.601(0.235/0.482)5657.299.54M
{001}<110>0.3981.797(0.899)6991.8594.51
{001}<120>0.1981.544(0.482)6152.3095.19
(010){001}<010>0.3101.5656732.2595.70
{001}<1$\bar 2$0>0.3291.704623698.96
{001}<1$\bar 1$0>0.3561.4245987.699.65M
(100){001}<110>0.3842.3666844.696.39
{001}<120>0.3071.5236556.7599.17S
(001){001}<120>2.0652.5717845.4597.45
{001}<010>1.91.693(0.384)6925.6098.73S
{001}<110>1.8512.7947274.9097.22
Table 4 MD simulation results for the possible slip systems along the shock directions normal to (101), (111), (011), (110), (010), (100), and (001) planes
Fig 4 Time evolutions of shear stress, potential energy, temperature, and the ratio of undecomposed TATB for the seven most favorable slip systems along the shock directions normal to (101), (111), (011), (110), (010), (100), and (001) planes during shear process color online
1 Jackson C. L. ; Wing J. F. J. Am. Chem. Soc. 1887, 9, 354.
2 null
3 null
4 null
5 Cady H. H. ; Larson A. C. Acta Cryst. 1965, 18, 485.
6 Agrawal J. P. Progr. Energy Combust. Sci. 1998, 24, 1.
7 Wu C. J. ; Fried L. E. J. Phys. Chem. A 2000, 104, 6447.
8 Xiao H. M. The Theory of the Molecular Orbits for Nitrocompound Beijing: National Defence Industry Press, 1993.
8 肖鹤鸣. 硝基化合物的分子轨道理论, 北京: 国防工业出版社, 1993.
9 Manaa M. R. ; Gee R. H. ; Fried L. E. J. Phys. Chem. A 2002, 106, 8806.
10 Roszak S. ; Gee R. H. ; Balasubramanian K. ; Fried L. E. Chem. Phys. Lett. 2003, 374, 286.
11 Zhang C. Y. ; Wang X. ; Huang H. J. Am. Chem. Soc. 2008, 130, 8359.
12 Ojeda O. U. ; Cagin T. J. Phys. Chem. B 2011, 115, 12085.
13 Pravica M. ; Yulga B. ; Liu Z. X. ; Tschauner O. Phys. Rev. B 2007, 76, 064102.
14 Pravica M. ; Yulga B. ; Tkachev S. ; Liu Z. X. J. Phys. Chem. A 2009, 113, 9133.
15 Manaa M. R. ; Fried L. E. J. Phys. Chem. C 2012, 116, 2116.
16 Dong H. S. Chin. J. Energy Mater. 2004, 12, 1.
17 Kolb J. R. ; Rizzo H. F. Propellants Explos. Pyrotech. 1979, 4, 10.
18 Gee R. H. ; Roszak S. ; Balasubramanian K. ; Fried L. E. J. Chem. Phys. 2004, 120, 7059.
19 Sun J. ; Kang B. ; Xue C. ; Liu Y. ; Xia Y. X. ; Liu X. F. ; Zhang W. Journal of Energetic Materials 2010, 28, 189.
20 Taylor D. E. J. Phys. Chem. A 2013, 117, 3507.
21 Bedrov D. ; Borodin O. ; Smith G. D. ; Sewell T. D. ; Dattelbaum D. M. ; Stevens L. L. J. Chem. Phys. 2009, 131, 224703.
22 Kroonblawd M. P. ; Sewell T. D. J. Chem. Phys. 2013, 139, 074503.
23 Kroonblawd M. P. ; Sewell T. D. J. Chem. Phys. 2014, 141, 184501.
24 Mathew N. ; Sewell T. D. ; Thompson D. L. J. Chem. Phys. 2015, 143, 094706.
25 Liu H. ; Zhao J. ; Du J. ; Gong Z. ; Ji G. F. ; Wei D. Q. Phys. Lett. A 2007, 367, 383.
26 Stevens L. L. ; Velisavljevic N. ; Hooks D. E. ; Dattelbaum D. M. ; Propellants Explos. Pyrotech. 2008, 33, 286.
27 Valenzano L. ; Slough W. J. ; Perger W. AIP Conf. Proc. 2012, 1426, 1191.
28 Budzevich M. M. ; Landerville A. C. ; Conroy M. W. ; Lin Y. ; Oleynik I. I. ; White C. T. J. Appl. Phys. 2010, 107, 113524.
29 Bowden F. P. ; Yoffe A. D. Initiation and Growth of Explosion in Liquids and Solids 1st ed Cambridge: Cambridge University Press, 1985.
30 Dick J. J. ; Mulford R. N. ; Spencer W. J. ; Pettit D. R. ; Garcia E. ; Shaw D. C. J. Appl. Phys. 1991, 70, 3572.
31 Armstrong R.W. ; Ammon H. L. ; Elban W. L. ; Tsai D. H. Thermochim. Acta 2002, 384, 303.
32 Dick J. J. ; Ritchie J. P. J. Appl. Phys. 1994, 76, 2726.
33 Dick J. J. J. Appl. Phys. 1997, 81, 601.
34 Yoo C. S. ; Holmes N. C. ; Souers P. C. ; Wu C. J. ; Ree F. H. ; Dick J. J. J. Appl. Phys. 2000, 88, 70.
35 Dick J. J. ; Hooks D. E. ; Menikoff R. ; Martinez A. R. J. Appl. Phys. 2004, 96, 374.
36 Menikoff R. ; Dick J. J. ; Hooks D. E. J. Appl. Phys. 2005, 97, 023529.
37 Jaramillo E. ; Sewell T. D. ; Strachan A. Phys. Rev. B 2007, 76, 064112.
38 Ramos K. J. ; Hooks D. E. ; Sewell T. D. ; Cawkwell M. J. J. Appl. Phys. 2010, 108, 066105.
39 Cawkwell M. J. ; Ramos K. J. ; Hooks D. E. ; Sewell T. D. J. Appl. Phys. 2010, 107, 063512.
40 Bedrov D. ; Hooper J. B. ; Smith G. D. ; Sewell T. D. J. Chem. Phys. 2009, 131, 034712.
41 Eason R. M. ; Sewell T. D. J. Phys. Chem. C 2012, 116, 2226.
42 Conroy M. W. ; Oleynik I. I. ; Zybin S. V. ; White C. T. Phys. Rev. B 2008, 77, 094107.
43 Conroy M. W. ; Oleynik I. I. ; Zybin S. V. ; White C. T. J. Appl. Phys. 2008, 104, 053506.
44 Zybin S. V. ; GoddardI W. A. II. ; Xu P. ; van Duin A. C. T. ; Thompson A. P. Appl. Phys. Lett. 2010, 96, 081918.
45 An Q. ; Liu Y. ; Zybin S. V. ; Kim H. ; Goddard III W. A. J. Phys. Chem. C 2012, 116, 10198.
46 Zhou T. T. ; Zybin S. V. ; Liu Y. ; Huang F. L. ; Goddard W. A. III. J. Appl. Phys. 2012, 111, 124904.
47 Song H. J. ; Zhou T. T. ; Huang F. L. ; Hong T. Acta Phys.-Chim. Sin. 2014, 30, 2024.
47 宋华杰; 周婷婷; 黄风雷; 洪滔. 物理化学学报, 2014, 30, 2024.
48 Kuklja M. M. ; Rashkeev S. N. Appl. Phys. Lett. 2007, 90, 151913.
49 Kuklja M. M. ; Rashkeev S. N. J. Phys. Chem. Lett. 2010, 1, 363.
50 Kuklja M. M. ; Rashkeev S. N. Journal of Energetic Materials 2010, 28, 66.
51 Zhang C. Y. J. Phys. Chem. B 2007, 111, 14295.
52 Mathew N. ; Sewell T. D. Philosophical Magazine 2015, 95, 424.
53 van Duin A. C. T. ; Dasgupta S. ; Lorant F. ; Goddard III W. A. J. Phys. Chem. A 2001, 105, 9396.
54 Zhou T. T. ; Shi Y. D. ; Huang F. L. Acta Phys.-Chim. Sin. 2012, 28, 2605.
54 周婷婷; 石一丁; 黄风雷. 物理化学学报, 2012, 28, 2605.
55 Strachan A. ; van Duin A. C. T. ; Dasgupta S. ; Chakraborty D. ; Goddard III W. A. Phys. Rev. Lett. 2003, 91, 098301.
56 Nomura K. ; Kalia R. K. ; Nakano A. ; Vashishta P. Appl. Phys. Lett. 2007, 91, 183109.
57 An Q. ; Zybin S. V. ; Goddard III W. A. ; Botero A. J. ; Blanco M. ; Luo S. N. Phys. Rev. B 2011, 84, 220101.
58 Liu L. C. ; Liu Y. ; Zybin S. V. ; Goddard III W. A. J. Phys. Chem. A 2011, 115, 11016.
59 Zhou T. T. ; Lou J. F. ; Zhang Y. G. ; Song H. J. ; Huang F. L. Phys. Chem. Chem. Phys. 2016, 18, 17627.
60 Wang Y. N. ; Chen S. J. ; Dong X. C. Dislocation Theory and Its Application Beijing: Metallurgical Industry Press, 2007.
60 王亚男; 陈树江; 董希淳. 位错理论及其应用, 北京: 冶金工业出版社, 2007.
61 null
[1] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1905-1914.
[2] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1773-1780.
[3] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1399-1410.
[4] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1354-1365.
[5] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1214-1222.
[6] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1140-1148.
[7] Meng-Fang CHANG,Lei LI,Xiao-Dan CAO,Meng-Hui JIA,Jia-Sheng ZHOU,Jin-Quan CHEN,Jian-Hua XU. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1065-1070.
[8] ZHAO Yuan, CAO Ze-Xing. Global Simulations of Enzymatic Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 691-708.
[9] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 745-754.
[10] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2472-2479.
[11] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2173-2183.
[12] ZHANG Wei-Feng, XIAN Lei-Yong, YONG Kang-Le, HE Jiu-Ning, ZHANG Chang-Hua, LI Ping, LI Xiang-Yuan. A Shock Tube Study of n-Undecane/Air Ignition Delays over a Wide Range of Temperatures[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2216-2222.
[13] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[14] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2255-2263.
[15] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (I): Surface Atom Identification[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2113-2118.