Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 949-959    DOI: 10.3866/PKU.WHXB201702152
The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation
ZHOU Ting-Ting1, SONG Hua-Jie1, HUANG Feng-Lei2
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, P. R. China;
2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
Download:   PDF(1840KB) Export: BibTeX | EndNote (RIS)       Supporting Info


The slip and anisotropy of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) crystal under shock loading along various directions were investigated using molecular dynamics simulation combined with reactive force field (ReaxFF). The shock strength was approximately 10 GPa, and seven shock orientations normal to the (101), (111), (011), (110), (010), (100), and (001) crystal planes were considered. For these shock directions, the slip systems that are likely to be activated are predicted to be on the {001} plane, whereas others that could not be activated exhibit large shear stress barriers. These slip characteristics are consistent with the layered structure of TATB crystal along the c axis and the planar structure of TATB molecule. The most favorable slip systems are suggested to be (101)/{001}<100>, (111)/{001}<010>, (011)/{001}<010>, (110)/{001}<010>, (010)/{001} <110>, (100)/{001}<120>, and (001)/{001}<010>. TATB crystal exhibits anisotropic response to shock loading, that is, the shear stress, energy, temperature, and chemical reactivity during shear deformation depend on shock direction. For the (100) and (001) shock planes, the shear stress barrier is relatively high and lasts for a long time, leading to fast energy accumulation and temperature increment, which, in turn, increase the chemical reactivity. In contrast, for the (101) and (111) shock planes, the small shear stress barrier results in slow energy accumulation and temperature rise and, thus, low chemical reactivity. The (011), (110), and (010) shock planes exhibit intermediate responses. The sensitivity of the seven shock planes can be ranked as follows: (101), (111) < (011), (110), (010) < (100), (001). This study provides microscale insight into the response mechanisms and structure-property relationship of TATB crystal under dynamic loading and may facilitate designing explosives with high energy but low sensitivity.

Key wordsTATB      Shock      Slip      Anisotropy      ReaxFF      Molecular dynamics     
Received: 10 October 2016      Published: 15 February 2017
MSC2000:  O642  

The project was supported by the National Natural Science Foundation of China (11402031, 11372053, 11221202).

Corresponding Authors: ZHOU Ting-Ting, HUANG Feng-Lei     E-mail:;
Cite this article:

ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.

URL:     OR

(1) Jackson, C. L.; Wing, J. F. J. Am. Chem. Soc. 1887, 9, 354.
(2) Travis, J. R. TATB: The IHE exemplar. Report No. LA-UR-92-3883, Los Alamos National Laboratory, NM, USA, 1992.
(3) Dobratz, B. M. The insensitive high explosivetriaminotrinitrobenzene (TATB): Development andcharacterization-1888 to 1994. Report No. LA-13014-H, LosAlamos National Laboratory, NM, USA, 1995.
(4) Rice, S. F.; Simpson, R. L. The Unusual Stability of TATB: AReview of the Scientific Literature. Report No. UCRL-LR-103683, Lawrence Livermore National Laboratory, Livermore, CA, USA 1990.
(5) Cady, H. H.; Larson, A. C. Acta Cryst. 1965, 18, 485.doi: 10.1107/S0365110X6500107X
(6) Agrawal, J. P. Progr. Energy Combust. Sci. 1998, 24, 1.doi: 10.1016/S0360-1285(97)00015-4
(7) Wu, C. J.; Fried, L. E. J. Phys. Chem. A 2000, 104, 6447. doi: 10.1021/jp001019r
(8) Xiao, H. M. The Theory of the Molecular Orbits forNitrocompound; National Defence Industry Press: Beijing, 1993. [肖鹤鸣. 硝基化合物的分子轨道理论. 北京: 国防工业出版社, 1993.]
(9) Manaa, M. R.; Gee, R. H.; Fried, L. E. J. Phys. Chem. A 2002, 106, 8806. doi: 10.1021/jp0259972
(10) Roszak, S.; Gee, R. H.; Balasubramanian, K.; Fried, L. E.Chem. Phys. Lett. 2003, 374, 286. doi: 10.1016/S0009-2614(03)00727-9
(11) Zhang, C. Y.; Wang, X.; Huang, H. J. Am. Chem. Soc. 2008, 130, 8359. doi: 10.1021/ja800712e
(12) Ojeda, O. U.; Cagin, T. J. Phys. Chem. B 2011, 115, 12085.doi: 10.1021/jp2007649
(13) Pravica, M.; Yulga, B.; Liu, Z. X.; Tschauner, O. Phys. Rev. B 2007, 76, 064102. doi: 10.1103/PhysRevB.76.064102
(14) Pravica, M.; Yulga, B.; Tkachev, S.; Liu, Z. X. J. Phys. Chem. A 2009, 113, 9133. doi: 10.1021/jp903584x
(15) Manaa, M. R.; Fried, L. E. J. Phys. Chem. C 2012, 116, 2116.doi: 10.1021/jp205920n
(16) Dong, H. S. Chin. J. Energy Mater. 2004, 12, 1.
(17) Kolb, J. R.; Rizzo, H. F. Propellants Explos. Pyrotech. 1979, 4, 10. doi: 10.1002/prep.19790040104
(18) Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. J.Chem. Phys. 2004, 120, 7059. doi: 10.1063/1.1676120
(19) Sun, J.; Kang, B.; Xue, C.; Liu, Y.; Xia, Y. X.; Liu, X. F.; Zhang, W. Journal of Energetic Materials 2010, 28, 189. doi: 10.1080/07370650903401254
(20) Taylor, D. E. J. Phys. Chem. A 2013, 117, 3507. doi: 10.1021/jp4005289
(21) Bedrov, D.; Borodin, O.; Smith, G. D.; Sewell, T. D.; Dattelbaum, D. M.; Stevens, L. L. J. Chem. Phys. 2009, 131, 224703. doi: 10.1063/1.3264972
(22) Kroonblawd, M. P.; Sewell, T. D. J. Chem. Phys. 2013, 139, 074503. doi: 10.1063/1.4816667
(23) Kroonblawd, M. P.; Sewell, T. D. J. Chem. Phys. 2014, 141, 184501. doi: 10.1063/1.4901206
(24) Mathew, N.; Sewell, T. D.; Thompson, D. L. J. Chem. Phys. 2015, 143, 094706. doi: 10.1063/1.4929806
(25) Liu, H.; Zhao, J.; Du, J.; Gong, Z.; Ji, G. F.; Wei, D. Q. Phys.Lett. A 2007, 367, 383. doi: 10.1016/j.physleta.2007.03.048
(26) Stevens, L. L.; Velisavljevic, N.; Hooks, D. E.; Dattelbaum, D.M. Propellants, Explos. Pyrotech. 2008, 33, 286. doi: 10.1002/prep.200700270
(27) Valenzano, L.; Slough, W. J.; Perger, W. AIP Conf. Proc. 2012, 1426, 1191. doi: 10.1063/1.3686493
(28) Budzevich, M. M.; Landerville, A. C.; Conroy, M.W.; Lin, Y.; Oleynik, I. I.; White, C. T. J. Appl. Phys. 2010, 107, 113524. doi: 10.1063/1.3361407
(29) Bowden, F. P.; Yoffe, A. D. Initiation and Growth of Explosionin Liquids and Solids, 1st ed.; Cambridge University Press:Cambridge, 1985.
(30) Dick, J. J.; Mulford, R. N.; Spencer, W. J.; Pettit, D. R.; Garcia, E.; Shaw, D. C. J. Appl. Phys. 1991, 70, 3572. doi: 10.1063/1.349253
(31) Armstrong, R.W.; Ammon, H. L.; Elban, W. L.; Tsai, D. H.Thermochim. Acta 2002, 384, 303. doi: 10.1016/S0040-6031(01)00786-9
(32) Dick, J. J.; Ritchie, J. P. J. Appl. Phys. 1994, 76, 2726. doi: 10.1063/1.357576
(33) Dick, J. J. J. Appl. Phys. 1997, 81, 601. doi: 10.1063/1.364201
(34) Yoo, C. S.; Holmes, N. C.; Souers, P. C.; Wu, C. J.; Ree, F. H.; Dick, J. J. J. Appl. Phys. 2000, 88, 70. doi: 10.1063/1.373626
(35) Dick, J. J.; Hooks, D. E.; Menikoff, R.; Martinez, A. R. J. Appl.Phys. 2004, 96, 374. doi: 10.1063/1.1757026
(36) Menikoff, R.; Dick, J. J.; Hooks, D. E. J. Appl. Phys. 2005, 97, 023529. doi: 10.1063/1.1828602
(37) Jaramillo, E.; Sewell, T. D.; Strachan, A. Phys. Rev. B 2007, 76, 064112. doi: 10.1103/PhysRevB.76.064112
(38) Ramos, K. J.; Hooks, D. E.; Sewell, T. D.; Cawkwell, M. J. J.Appl. Phys. 2010, 108, 066105. doi: 10.1063/1.3485807
(39) Cawkwell, M. J.; Ramos, K. J.; Hooks, D. E.; Sewell, T. D. J.Appl. Phys. 2010, 107, 063512. doi: 10.1063/1.3305630
(40) Bedrov, D.; Hooper, J. B.; Smith, G. D.; Sewell, T. D. J. Chem.Phys. 2009, 131, 034712. doi: 10.1063/1.3177350
(41) Eason, R. M.; Sewell, T. D. J. Phys. Chem. C 2012, 116, 2226.doi: 10.1021/jp206826d
(42) Conroy, M.W.; Oleynik, I. I.; Zybin, S. V.; White, C. T. Phys.Rev. B 2008, 77, 094107. doi: 10.1103/PhysRevB.77.094107
(43) Conroy, M.W.; Oleynik, I. I.; Zybin, S. V.; White, C. T. J. Appl.Phys. 2008, 104, 053506. doi: 10.1063/1.2973689
(44) Zybin, S. V.; GoddardI, W. A., Ⅱ; Xu, P.; van Duin, A. C. T.; Thompson, A. P. Appl. Phys. Lett. 2010, 96, 081918.doi: 10.1063/1.3323103
(45) An, Q.; Liu, Y.; Zybin S. V.; Kim, H.; Goddard Ⅲ, W. A. J.Phys. Chem. C 2012, 116, 10198. doi: 10.1021/jp300711m
(46) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; Goddard, W. A.Ⅲ. J. Appl. Phys. 2012, 111, 124904. doi: 10.1063/1.4729114
(47) Song, H. J.; Zhou, T. T.; Huang, F. L.; Hong, T. Acta Phys.-Chim. Sin. 2014, 30, 2024. [宋华杰, 周婷婷, 黄风雷, 洪滔.物理化学学报, 2014, 30, 2024.] doi: 10.3866/PKU.WHXB201409192
(48) Kuklja, M. M.; Rashkeev, S. N. Appl. Phys. Lett. 2007, 90, 151913. doi: 10.1063/1.2719031
(49) Kuklja, M. M.; Rashkeev, S. N. J. Phys. Chem. Lett. 2010, 1, 363. doi: 10.1021/jz9001967
(50) Kuklja, M. M.; Rashkeev, S. N. Journal of Energetic Materials 2010, 28, 66. doi: 10.1080/07370651003639397
(51) Zhang, C. Y. J. Phys. Chem. B 2007, 111, 14295. doi: 10.1021/jp0770357
(52) Mathew, N.; Sewell, T. D. Philosophical Magazine 2015, 95, 424. doi: 10.1080/14786435.2015.1006706
(53) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard Ⅲ, W. A.J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u
(54) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin. 2012, 28, 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28, 2605.] doi: 10.3866/PKU.WHXB201208031
(55) Strachan, A.; van Duin, A. C. T.; Dasgupta, S.; Chakraborty, D.; Goddard Ⅲ, W. A. Phys. Rev. Lett. 2003, 91, 098301.doi: 10.1103/PhysRevLett.91.098301
(56) Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Appl. Phys.Lett. 2007, 91, 183109. doi: 10.1063/1.2804557
(57) An, Q.; Zybin, S. V.; Goddard Ⅲ, W. A.; Botero, A. J.; Blanco, M.; Luo, S. N. Phys. Rev. B 2011, 84, 220101. doi: 10.1103/PhysRevB.84.220101
(58) Liu, L. C.; Liu, Y.; Zybin, S. V.; Goddard Ⅲ, W. A. J. Phys.Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t
(59) Zhou, T. T.; Lou, J. F.; Zhang, Y. G.; Song, H. J.; Huang, F. L.Phys. Chem. Chem. Phys. 2016, 18, 17627. doi: 10.1039/C6CP02015A
(60) Wang, Y. N.; Chen, S. J.; Dong, X. C. Dislocation Theory andIts Application; Metallurgical Industry Press: Beijing, 2007. [王亚男, 陈树江, 董希淳. 位错理论及其应用. 北京: 冶金工业出版社, 2007.]
(61) Thompson, A. P. General Reactive Atomistic SimulationPackage; Sandia National Laboratories: NM, USA 2005.

[1] WANG Xiu-Xiu, ZHAO Jian-Wei, YU Gang. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[2] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[3] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[4] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[5] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[6] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[7] CHANG Meng-Fang, LI Lei, CAO Xiao-Dan, JIA Meng-Hui, ZHOU Jia-Sheng, CHEN Jin-Quan, XU Jian-Hua. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1065-1070.
[8] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[9] ZHAO Yuan, CAO Ze-Xing. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[10] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[11] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.
[12] ZHANG Wei-Feng, XIAN Lei-Yong, YONG Kang-Le, HE Jiu-Ning, ZHANG Chang-Hua, LI Ping, LI Xiang-Yuan. A Shock Tube Study of n-Undecane/Air Ignition Delays over a Wide Range of Temperatures[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2216-2222.
[13] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[14] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2255-2263.
[15] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (I): Surface Atom Identification[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2113-2118.