Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1057-1064    DOI: 10.3866/PKU.WHXB201702161
ARTICLE     
White Organic Light-Emitting Diodes Based on Exciton and Electroplex Dual Emissions
Kang-Ming TAN1,Min-Nan YAN1,Ying-Nan WANG1,Ling-Hai XIE1,Yan QIAN1,*(),Hong-Mei ZHANG1,*(),Wei HUANG1,2,*()
1 Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
2 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
Download: HTML     PDF(1263KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Two new blue-light-emitting materials based on tetraphenylethylene (TPE), TPE-4Br, and TPE-3Br have been designed and synthesized. They have been used as emitting materials in organic light-emitting diodes (OLEDs) and have been found to form electroplex with an appropriate neighboring hole or electron transporting layer. Using the intrinsic local exciton emission and electroplex emission, desirable white electroluminescence has been obtained. Using TPE-4Br and TPE-3Br in 1, 3-di (9H-carbazol-9-yl) benzene (mCP) matrix as the emitting layer, 4, 4'-(cyclohexane-1, 1-diyl) bis (N, N-di-p-tolylaniline) (TAPC) and 3, 3'-(5'-(3-(pyridin-3-yl) phenyl)-[1, 1':3', 1"-terphenyl]-3, 3"-diyl) dipyridine (TmPyPB) as the hole and electron transporting layers, respectively, Device A and Device B have been fabricated with the corresponding CIE coordinates of (0.32, 0.33) and (0.31, 0.34) at 9 V. Device B showed the maximum luminance of 364.66 cd·m-2 and the maximum current efficiency of 0.79 cd·A-1.



Key wordsWhite organic light-emitting diode      Electroplex      Tetraphenylethene      Solid state emission     
Received: 14 December 2016      Published: 16 February 2017
MSC2000:  O649  
Fund:  the National Basic Research Program of China (973 Program)(2012CB723402);Jiangsu National Synergistic Innovation Center for Advanced Materials, China(国家级2011协同创新中心);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)(YX03001);China, Synergistic Innovation Center for Organic Electronics and Information Displays, National Natural Science Foundation of China(21373114);China, Synergistic Innovation Center for Organic Electronics and Information Displays, National Natural Science Foundation of China(21573111);China, Synergistic Innovation Center for Organic Electronics and Information Displays, National Natural Science Foundation of China(61674081);China, Synergistic Innovation Center for Organic Electronics and Information Displays, National Natural Science Foundation of China(51333007);six Talents Peak Project of Jiangsu Province, China(XCL-CXTD-009);Qing Lan Project of Jiangsu Province, NUPT 1311 project, China
Corresponding Authors: Yan QIAN,Hong-Mei ZHANG,Wei HUANG     E-mail: iamyqian@njupt.edu.cn;iamhmzhang@njupt.edu.cn;iamwhuang@njupt.edu.cn
Cite this article:

Kang-Ming TAN,Min-Nan YAN,Ying-Nan WANG,Ling-Hai XIE,Yan QIAN,Hong-Mei ZHANG,Wei HUANG. White Organic Light-Emitting Diodes Based on Exciton and Electroplex Dual Emissions. Acta Physico-Chimica Sinca, 2017, 33(5): 1057-1064.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702161     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1057

Fig 1 Synthetic routes of TPE-4Br and TPE-3Br
Fig 2 Chemical structures of organic materials and simplified configuration of OLED devices TmPyPB: 3, 3′-(5′-(3-(pyridin-3-yl) phenyl)-[1, 1′:3′, 1″-terphenyl]-3, 3″-diyl) dipyridine; mPC: 1, 3-di (9H-carbazol-9-yl) benzene; EM: emitting materials; TAPC: 4, 4′-(cyclohexane-1, 1-diyl) bis (N, N-di-p-tolylaniline); ITO: indium tin oxide
Fig 3 Normalized absorption and fluorescence spectra of TPE-4Br and TPE-3Br films
Fig 4 Cyclic voltammograms of TPE-4Br and TPE-3Br
Fig 5 (a) Thermogravimetric analysis (TGA) and (b) differential scanning calorimetry (DSC) curves of TPE-4Br and TPE-3Br
Fig 6 Normalized electroluminescence (EL) spectra of Device 1-6 at 9 V inset: PL spectrum of quartz/TAPC (40 nm)/mCP (40 nm)
Fig 7 Energy levels of the used materials in Device 1-6
Fig 8 Normalized EL spectra of Device A and Device B at different operating voltages
Device CIE (x, y)
8 V 9 V 10 V 11 V 12 V
A (0.29, 0.31) (0.32, 0.33) (0.38, 0.37) (0.38, 0.37) (0.39, 0.38)
B (0.30, 0.33) (0.31, 0.33) (0.34, 0.36) (0.36, 0.36) (0.37, 0.37)
Table 1 CIE coordinations of the OLEDs at different operating voltages
Fig 9 Current density-voltage-luminance (a, b) and current efficiency-luminance (c, d) curves of Device A and Device B
1 Muller C. D. ; Falcou A. ; Reckefuss N. ; Rojahn M. ; Wiederhirn V. ; Rudati P. ; Frohne H. ; Nuyken O. ; Becker H. ; Meerholz K. Nature 2003, 421 (6925), 829.
2 Sun Y. R. ; Giebink N. C. ; Kanno H. ; Ma B.W. ; Thompson M. E. ; Forrest S. R. Nature 2006, 440 (7086), 908.
3 Uoyama H. ; Goushi K. ; Shizu K. ; Nomura H. ; Adachi C. Nature 2012, 492 (7428), 234.
4 Kaji H. ; Suzuki H. ; Fukushima T. ; Shizu K. ; Suzuki K. ; Kubo S. ; Komino T. ; Oiwa H. ; Suzuki F. ; Wakamiya A. ; Murata Y. ; Adachi C. Nat. Commun. 2015, 6
5 D'Andrade B. W. ; Forrest S. R. Adv. Mater. 2004, 16 (18), 1585.
6 Gather M. C. ; Kohnen A. ; Meerholz K. Adv. Mater. 2011, 23 (2), 233.
7 Ye J. ; Zheng C. J. ; Ou X. M. ; Zhang X. H. ; Fung M. K. ; Lee C. S. Adv. Mater. 2012, 24 (25), 3410.
8 Ying L. ; Ho C. L. ; Wu H. B. ; Cao Y. ; Wong W. Y. Adv. Mater. 2014, 26 (16), 2459.
9 Yang X. L. ; Zhou G. J. ; Wong W. Y. J. Mater. Chem. 2014, 2 (10), 1760.
10 Wang X. P. ; Qian Y. ; Zhu T. J. ; Cai M. M. ; Mi B. X. ; Jiang X. Y. ; Gao Z. Q. ; Huang W. ; Zhang Z. L. Phys. Status Solidi A 2012, 209 (2), 373.
11 Ye J. F. ; Liu C. ; Ou C. J. ; Cai M. M. ; Chen S. F. ; Wei Q. ; Li W.W. ; Qian Y. ; Xie L. H. ; Mi B. X. ; Gao Z. Q. ; Huang W. Adv. Opt. Mater. 2014, 2 (10), 938.
12 Liu X. K. ; Chen Z. ; Qing J. ; Zhang W. J. ; Wu B. ; Tam H. L. ; Zhu F. R. ; Zhang X. H. ; Lee C. S. Adv. Mater. 2015, 27 (44), 7079.
13 Wu Z. B. ; Luo J. J. ; Sun N. ; Zhu L. P. ; Sun H. D. ; Yu L. ; Yang D. Z. ; Qiao X. F. ; Chen J. S. ; Yang C. L. ; Ma D. G. Adv. Funct. Mater. 2016, 26 (19), 3306.
14 Zhao B. ; Zhang T. Y. ; Li W. L. ; Su Z. S. ; Chu B. ; Yan X.W. ; Jin F. M. ; Gao Y. ; Wu H. R. Org. Electron. 2015, 23, 208.
15 Kim B. S. ; Lee J. Y. Org. Electron. 2015, 21, 100.
16 Zhao B. ; Zhang T. Y. ; Chu B. ; Li W. L. ; Su Z. S. ; Luo Y. S. ; Li R. G. ; Yan X.W. ; Jin F. M. ; Gao Y. ; Wu H. R. Org.Electron. 2015, 17, 15.
17 Zheng C. J. ; Wang J. ; Ye J. ; Lo M. F. ; Liu X. K. ; Fung M.K. ; Zhang X. H. ; Lee C. S. Adv. Mater. 2013, 25 (15), 2205.
18 Zhang B. H. ; Tan G. P. ; Lam C. S. ; Yao B. ; Ho C. L. ; Liu L.H. ; Xie Z. Y. ; Wong W. Y. ; Ding J. Q. ; Wang L. X. Adv.Mater. 2012, 24 (14), 1873.
19 Yang X. H. ; Wang Z. X. ; Madakuni S. ; Li J. ; Jabbour G. E. Adv. Mater. 2008, 20 (12), 2405.
20 Wang R. J. ; Liu D. ; Ren H. C. ; Zhang T. ; Yin H. M. ; Liu G.Y. ; Li J. Y. Adv. Mater. 2011, 23 (25), 2823.
21 Ho C. L. ; Wong W. Y. ; Wang Q. ; Ma D. G. ; Wang L. X. ; Lin Z. Y. Adv. Funct. Mater. 2008, 18 (6), 928.
22 Zou J. H. ; Wu H. ; Lam C. S. ; Wang C. D. ; Zhu J. ; Zhong C.M. ; Hu S. J. ; Ho C. L. ; Zhou G. J. ; Wu H. B. ; Choy W. C. H. ; Peng J. B. ; Cao Y. ; Wong W. Y. Adv. Mater. 2011, 23 (26), 2976.
23 Chen S. M. ; Tan G. P. ; Wong W. Y. ; Kwok H. S. Adv. Funct.Mater. 2011, 21 (19), 3785.
24 Wen L. ; Li F. S. ; Xie J. X. ; Wu C. X. ; Zheng Y. ; Chen D. L. ; Xu S. ; Guo T. L. ; Qu B. ; Chen Z. J. ; Gong Q. H. J. Lumin. 2011, 131 (11), 2252.
25 Park Y. S. ; Jeong W. I. ; Kim J. J. J. Appl. Phys. 2011, 110 (12)
26 Hao Y. Y. ; Meng W. X. ; Xu H. X. ; Wang H. ; Liu X. G. ; Xu B. S. Org. Electron. 2011, 12 (1), 136.
27 Zhang M. X. ; Chen Z. J. ; Xiao L. X. ; Qu B. ; Gong Q. H. Appl. Phys. Express 2011, 4 (8)
28 Nishikitani Y. ; Inokuchi N. ; Nishide H. ; Uchida S. ; Shibanuma T. ; Nishimura S. J. Phys. Chem. C 2016, 120 (26), 13976.
29 Wei M. Y. ; Gui G. ; Chung Y. H. ; Xiao L. X. ; Qu B. ; Chen Z. J. Phys. Status Solidi B 2015, 252 (8), 1711.
30 Zhu H. N. ; Xu Z. ; Zhang F. J. ; Zhao S. L. ; Wang Z. B. ; Song D. D. Synth. Met. 2009, 159 (23-24), 2458.
31 He S. J. ; Wang D. K. ; Jiang N. ; Tse J. S. ; Lu Z. H. Adv.Mater. 2016, 28 (4), 649.
32 Granlund T. ; Pettersson L. A. A. ; Anderson M. R. ; Inganas O. J. Appl. Phys. 1997, 81 (12), 8097.
33 Cao H. ; Gao X. C. ; Huang C. H. Appl. Surf. Sci. 2000, 161 (3-4), 443.
34 Wang, Y. M.; Teng, F.; Xu, Z.; Hou, Y. B.; Wang, Y. S.; Xu, X.R. Eur. Polym. J. 2005, 41 (5), 1020. doi: 10.1016/j.eurpolymj.2004.11.026
35 Li J. M. ; Xu Z. ; Zhang F. J. ; Zhao S. L. ; Song D. D. ; Zhu H.N. ; Song J. L. ; Wang Y. S. ; Xu X. R. Solid-State Electron. 2010, 54 (4), 349.
36 Matsumoto N. ; Nishiyarna M. ; Adachi C. J. Phys. Chem. C 2008, 112 (20), 7735.
37 Li G. J. ; Fleetham T. ; Li J. Adv. Mater. 2014, 26 (18), 2931.
38 Kalinowski J. ; Cocchi M. ; Virgili D. ; Fattori V. ; Williams J.A. G. Adv. Mater. 2007, 19 (22), 4000.
39 Fleetham T. ; Ecton J. ; Wang Z. ; Bakken N. ; Li J. Adv. Mater. 2013, 25 (18), 2573.
40 Stampor W. Chem. Phys. 2000, 256 (3), 351.
[1] MA Tao; JIANG Ya-Dong; YU Jun-Sheng; LOU Shuang-Ling; LI Lu; ZHANG Qing. Bright White Organic Light-Emitting Diode Mixed Blue and Green Emission[J]. Acta Physico-Chimica Sinca, 2008, 24(06): 977-980.