Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 927-940    DOI: 10.3866/PKU.WHXB201702211
Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R
LI Ai-Jing, XIE Wei, WANG Ming, XU Si-Chuan
Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy, Yunnan University, Kunming 650091, P. R. China
Download:   PDF(2432KB) Export: BibTeX | EndNote (RIS)      


In this paper, based on the complex protein structure of third dopamine receptor (D3R) with dopamine (DOP), we have studied the trajectories with the free energy changes of D3R for DOP to move along its molecular channels and then probed the molecular dynamics mechanism of DOP transmitting along molecular channels, using molecular dynamics techniques including the potential mean force (PMF) of umbrella samplings from the GROMACS program (version 4.5). Simulation results show that for DOP located in the space region of D3R to act as a neurotransmitter transmitting toward the outside of cell, the free energy change is 134.6 kJ·mol-1 along the functional molecular channel of y+ axis within D3R, and 211.5 kJ·mol-1 along the y-axis towards the intracellular part. Within the structure of D3R, the free energy changes are 65.8, 245.0, 551.4, 172.8 kJ·mol-1 for DOP to transmit along the x+, x-, z+, z-axes, respectively, towards cell bilayer membrane, indicating that DOP leaves more easily along the x+ axis through the gap between TM5 (the fifth transmembrane helix) and TM6 (the sixth transmembrane helix) from the internal structure of D3R. When free DOP molecules are located in the intercellular spaces, once they start moving along the inverse y+ axis direction under constant pressure and temperature, they spontaneously pass through the functional molecular channel to reach the space region of D3R to act as a neurotransmitter, because the free energy change between DOP and D3R along the inverse y+ axis direction is negative (-134.6 kJ·mol-1). Therefore, DOP interacting with D3R can easily play the role of a neurotransmitter. After DOP molecules have performed the actions of a neurotransmitter, they leave the internal structure of D3R along the x+ axis of a protective molecular channel through the gap between TM5 and TM6 to avoid excessive function as transmitter. According to dopamine functional and protective molecular channels, we suggest new pathologies and the finding and development of new drugs for Parkinson's disease and schizophrenia.

Key wordsDopamine      Dopamine receptor      Molecular channel      Molecular simulation      Parkinson's disease      Schizophrenia     
Received: 19 October 2016      Published: 21 February 2017
MSC2000:  O641  

The project was supported from the National Natural Science Foundation of China (21163024, 21563032).

Corresponding Authors: XU Si-Chuan     E-mail:
Cite this article:

LI Ai-Jing, XIE Wei, WANG Ming, XU Si-Chuan. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R. Acta Phys. -Chim. Sin., 2017, 33(5): 927-940.

URL:     OR

(1) Carlsson, A.; Waters, N.; Waters, S.; Carlsson, M. L. Brain Res. 2000, 31, 342. doi: 10.1016/S0165-0173(99)00050-8
(2) Li, F.; Shu, S. Y.; Bao, X. M. Neurosci. Bull. 2003, 19 (6), 405.[李凡, 舒斯云, 包新民. 神经科学通报, 2003, 19 (6), 405.]
(3) Suri, R. E.; Bargas, J.; Arbib, M. A. Neuroscience 2001, 103, 65. doi: 10.1016/S0306-4522(00)00554-6
(4) Salum, C.; Roque, S. A.; Pickering, A. Neurocomputing 1999, 2627, 845. doi: 10.1016/S0925-2312(98)00129-5
(5) Bian, F. Y.; Shi, G. J.; Chi, S. M.; Xu, S. C. The PerspectiveInsight into the Pathology of Parkinsonism Using the MolecularChannel Theory of Dopamine inside its Receptor MembraneProtein. Chinese Chemical Society at the Second NationalConference on Bio-physical Chemistry (NCBPC2) and theInternational Forum on Development of Chinese Bio-PhysicalChemistry, Wuhan University, Wuhan, China, Oct 15-18, 2012.
(6) Xu, S. C.; Shi, G. J.; Chi, S. M. The Active Site Residues andthe Molecular Channels for Dopamine within D3R MembraneProtein. The 28thCCS (Chinese Chemical Society) Congress, Sichuan University, Chengdu, China, April 13-16, 2012.
(7) Kebabian, J.W.; Calne, D. B. Nature 1979, 277 (5692), 93.doi: 10.1038/277093a0
(8) Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, J.; Christie, M. Nature 1988, 336, 783. doi: 10.1038/336783a0
(9) Dearry, A.; Gingrich, J. A.; Falardeau, P.; Fremeau, R. T.; Bates, M. D.; Caron, M. G. Nature 1990, 347, 72. doi: 10.1038/347072a0
(10) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature 1990, 347, 146. doi: 10.1038/347146a0
(11) Van Tol, H. H.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610.doi: 10.1038/350610a0
(12) Sunahara, R. K.; Guan, H. C.; O'Dowd, B. F.; Seeman, P.; Laurier, L. G.; Ng, G.; George, S. R.; Torchia, J.; Van Tol, H. H.; Niznik, H. B. Nature 1991, 350, 614. doi: 10.1038/350614a0
(13) Chien, E. Y. T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Science 2010, 330, 1091.doi: 10.1126/science.1197410
(14) Jin, Y.; Wang, Y.; Bian, F. Y.; Shi, Q.; Ge, M. F.; Wang, S.; Zhang, X. K.; Xu, S. C. Acta Phys. -Chim. Sin. 2011, 27 (10), 2432. [金毅, 王悦, 卞富永, 史强, 葛茂发, 王树, 张兴康, 徐四川. 物理化学学报, 2011, 27 (10), 2432.] doi: 10.3866/PKU.WHXB20111001
(15) Xu, S. C.; Deng, S, R.; Ma, L. Y.; Shi, Q.; Ge, M. F.; Zhang, X.K. Acta Phys. -Chim. Sin. 2009, 25, 1290. [徐四川, 邓圣荣, 马丽英, 史强, 葛茂发, 张兴康. 物理化学学报, 2009, 25, 1290.] doi: 10.3866/PKU.WHXB20090701
(16) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818. doi: 10.1529/biophysj.104.052399
(17) Janosi, L.; Gorfe, A. A. J. Chem. Theory Comput. 2010, 6, 3267.doi: 10.1021/ct100381g
(18) Su, Z. Y.; Wang, Y. T. J. Phys. Chem. B 2011, 115, 796.doi: 10.1021/jp107599v
(19) Merlino, A.; Vitiello, G.; Grimaldi, M.; Sica, F.; Busi, E.; Basosi, R.; D'Ursi, A. M.; Fragneto, G.; Paduano, L.; D'Errico, G. J. Phys. Chem. B 2012, 116, 401. doi: 10.1021/jp204781a
(20) Polyansky, A. A.; Volynsky, P. E.; Nolde, D. E.; Arseniev, A. S.; Efremov, R. G. J. Phys. Chem. B 2005, 109, 15052.doi: 10.1021/jp0510185
(21) Puri, A.; Jang, H.; Yavlovich, A.; Masood, M. A.; Veenstra, T.D.; Luna, C.; Aranda-Espinoza, H.; Nussinov, R.; Blumenthal, R. Langmuir 2011, 27, 15120. doi: 10.1021/la203453x
(22) Payandeh, J.; Gamal El-Din, T. M.; Scheuer, T.; Zheng, N.; Catterall, W. A. Nature 2012, 486, 135. doi: 10.1038/nature11077
(23) Jönsson, P.; Jonsson, M. P.; Höök, F. Nano Lett. 2010, 10, 1900.doi: 10.1021/nl100779k
(24) Marrink, S. J.; Lindahl, E.; Edholm, O.; Mark, A. E. J. Am.Chem. Soc. 2001, 123, 8638. doi: 10.1021/ja0159618
(25) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952.doi: 10.1002/jcc.540130805
(26) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comput.Phys. Commun. 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E
(27) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701.doi: 10.1002/jcc.20291
(28) Van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Berendsen, H. J. Gromacs UserManual, version 4.5;
(29) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5
(30) Daura, X.; Mark, A. E.; Van Gunsteren, W. F. J. Comput. Chem. 1998, 19 (5), 535. doi: 10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N
(31) Van Gunsteren, W.; Billeter, S.; Eising, A.; Hunenberger, P.; Kruger, P.; Mark, A.; Tironi, I. Biomolecular Simulation: theGromos 96 Manual and User Guide, 1st ed.; HochschulverlagAG an der ETH Zurich: Zurich, Switzerland, 1996.
(32) Bian, F. Y.; Zhang, J.W.; Wang, D.; Xu, S. C. Acta Phys. -Chim.Sin. 2014, 30, 1947. [卞富永, 张继伟, 王丹, 徐四川. 物理化学学报, 2014, 30, 1947.] doi: 10.3866/PKU.WHXB201408271
(33) Zhang, J.W.; Bian, F. Y.; Shi, G. J.; Xu, S. C. Acta Phys. -Chim.Sin. 2014, 30, 183. [张继伟, 卞富永, 施国军, 徐四川. 物理化学学报, 2014, 30, 183.] doi: 10.3866/PKU.WHXB201311281
(34) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
(35) Wang, M.; Xie, W.; Li, A. J.; Xu, S. C. Chirality 2016, 28 (10), 674-685. doi: 10.1002/chir.22630
(36) Xie, W.; Wang, M.; Li, A J.; Xu, S. C. J. Biomol. Struct. Dyn. 2016, doi: 10.1080/07391102.2016.1190947
(37) Xie, W.; Xu, Z. R.; Wang, M.; Xu, S. C. Acta Phys. -Chim. Sin. 2016, 32, 907. [谢炜, 徐泽人, 王明, 徐四川. 物理化学学报, 2016, 32, 907.] doi: 10.3866/PKU.WHXB201601141
(38) Shi, G. J.; Wang, Y.; Jin, Y.; Chi, S. M.; Shi, Q.; Ge, M. F.; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2012, 30 (5), 559. doi: 10.1080/07391102.2012.687522
(39) Xu, S. C.; Chi, S. M.; Jin, Y.; Shi, Q.; Ge, M. F.; Wang, S.; Zhang, X. K. J. Mole. Model. 2012, 18 (1), 377. doi: 10.1007/s00894-011-1083-7
(40) Chi, S.; Xie, W.; Zhang, J.; Xu, S. C. J. Biomol. Struct. Dyn. 2015, 33 (10), 2234. doi: 10.1080/07391102.2014.999256
(41) Hub, J. S.; de Groot, B. L.; van der Spoel, D. J. Chem. TheoryComput. 2010, 6, 3713. doi: 10.1021/ct100494z
(42) Marrink, S. J.; Berendsen, H. J. C. J. Phys. Chem. 1994, 98, 4155. doi: 10.1021/j100066a040
(43) Marrink, S. J.; Jaehnig, F.; Berendsen, H. J. C. Biophys. J. 1996, 71, 632. doi: 10.1016/S0006-3495(96)79264-0
(44) Zahn, D.; Brickmann, J. Chem. Phys. Lett. 2002, 352, 441.doi: 10.1016/S0009-2614(01)01437-3
(45) Bemporad, D.; Essex, J.W.; Luttmann, C. J. Phys. Chem. B 2004, 108, 4875. doi: 10.1021/jp035260s
(46) Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. J. Phys. Chem. B 2004, 108, 9346. doi: 10.1021/jp035998+
(47) Nichols, J.W.; Deamer, D.W. Proc. Nat. Acad. Sci. U. S. A. 1980, 77, 2038. doi: 10.1073/pnas.77.4.2038919
(48) Benga, G.; Pop, V. I.; Popescu, O.; Borza, V. J. Biochem. Bioph.Meth. 1990, 21, 87. doi: 10.1016/0165-022X(90)90057-J
(49) Jansen, M.; Blume, A. Biophys. J. 1995, 68, 997. doi: 10.1016/S0006-3495(95)80275-4
(50) Andrasko, J.; Forsén, S. Biochem. Biophys. Res. Commun. 1974, 60, 813. doi: 10.1016/0006-291X(74)90313-1
(51) Graziani, Y.; Livne, A. J. Membr. Biol. 1972, 7, 275.doi: 10.1007/BF01867920
(52) Khavrutskii, I. V.; Gorfe, A. A.; Lu, B.; McCammon, J. A. J.Am. Chem. Soc. 2009, 131, 1706. doi: 10.1021/ja8081704
(53) Papahadjopoulos, D.; Nir, S.; Ohki, S. Biochim. Biophys. Acta 1972, 266, 561. doi: 10.1016/0005-2736(72)90354-9920
(54) Boateng, C. A.; Bakare, O. M.; Zhan, J.; Banala, A. K.; Burzynski, C.; Pommier, E.; Keck, T. M.; Donthamsetti, P.Javitch, J. A.; Rais, R.; Slusher, B. S.; Xi, Z. X.; Newman, A. H.J. Med. Chem. 2015, 58, 6195. doi: 10.1021/acs.jmedchem.5b00776
(55) Peelaerts, W.; Bousset, L.; Van der Perren, A.; Moskalyuk, A.; Pulizzi, R.; Giugliano, M.; Van den Haute, C.; Melki, R.; Baekelandt, V. Nature 2005, 522, 340. doi: 10.1038/nature14547
(56) Su, W.; Chen, H. B.; Li, S. H.; Wu, D. Y. Chin. J. Gen. Pract. 2008, 7, 683. [苏闻, 陈海波, 李淑华, 吴冬颖. 中华全科医师杂志, 2008, 7, 683.] doi: 10.3760/cma.j.issn.1671-7368.2008.10.010

[1] WANG Yi, JIA Nan-Fang, QI Sheng-Li, TIAN Guo-Feng, WU De-Zhen. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2227-2236.
[2] LIU Xiao-Long, LI Xiao-Xia, HAN Song, QIAO Xian-Jie, ZHONG Bei-Jing, GUO Li. Initial Reaction Mechanism of RP-3 High Temperature Oxidation Simulated with ReaxFF MD[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1424-1433.
[3] CUI Da-Chao, REN Wei-Tong, LI Wen-Fei, WANG Wei. Metadynamics Simulations of Mg2+ Transfer in the Late Stage of the Adenylate Kinase Catalytic Cycle[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 429-435.
[4] XU Shi-Wen, LIN Dong-Qiang, YAO Shan-Jing. Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2811-2818.
[5] LU Xiang, CHEN Xun, WANG Ya-Shun, TAN Yuan-Yuan, GAOMU Zi-Yuan. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2523-2530.
[6] ZHAO Meng-Yao, YANG Xue-Ping, YANG Xiao-Ning. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1489-1498.
[7] YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 685-692.
[8] WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2043-2054.
[9] BIAN Fu-Yong, ZHANG Ji-Wei, WANG Dan, XU Si-Chuan. Molecular Dynamics Simulation of the Permeation of Methyldopa through POPC Phospholipid Bilayer Membrane[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1947-1956.
[10] ZHANG Ji-Wei, BIAN Fu-Yong, SHI Guo-Jun, XU Si-Chuan. Molecular Dynamics Simulation of Dopamine Diffusion within and Permeation through POPC Phospholipid Bilayer Membrane[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 183-193.
[11] HUANG Yong-Qi, KANG Xue, XIA Bing, LIU Zhi-Rong. Mechanism of 3D Domain Swapping for Mpro-C: Clues from Molecular Simulations[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2411-2417.
[12] MEI Yong-Jun, HAN Yi-Xiu, ZHOU Hong, YAO Lin, JIANG Bo. Synergism between Hydrophobically Modified Polyacrylic Acid and Wormlike Micelles[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1751-1756.
[13] SUN De-Lin, ZHOU Jian. Dissipative Particle Dynamics Simulations on Mesoscopic Structures of Nafion and PVA/Nafion Blend Membranes[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 909-916.
[14] MIAO Yan-Lin, SUN Huai, WANG Lin, SUN Ying-Xin. Predicting Hydrogen Storage Performances in Porous Aromatic Frameworks Containing Carboxylate Functional Groups with Divalent Metallic Cations[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 547-554.
[15] ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 78-84.