Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1114-1122    DOI: 10.3866/PKU.WHXB201702213
ARTICLE     
Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter
Xu LI1,Qiang-Guo LI1,*(),Jian-Hong JIANG1,Hui-Wen GU2,*(),Chuan-Hua LI1,Sheng-Xiong XIAO1,Xia LI1
1 College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, P. R. China
2 College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
Download: HTML     PDF(780KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The SRC-100 type solution-reaction calorimeter was improved to a more precise and versatile isoperibol combustion-solution-reaction microcalorimeter. The energy equivalent of the calorimeter was calibrated to be Ccalor=(987.63±0.61) J·K-1 by the electric calibration method. The standard massic energy of combustion of benzoic acid and succinic acid were determined by the developed isoperibol combustion-solution-reaction microcalorimeter as △cUm, Bθ(cr, T=298.15K)=-(26425.99±10.70) J·g-1 and △cUm, Sθ(cr, T=298.15K)=-(12621.97±5.30) J·g-1, respec-tively. The uncertainty of the measurement was less than 0.04% and the accuracy was higher than 0.05%.



Key wordsCombustion-solution-reaction microcalorimeter      Standard massic energy of combustion      Benzoic acid      Succinic acid     
Received: 26 December 2016      Published: 21 February 2017
MSC2000:  O642  
Fund:  the National Natural Science Foundation of China(21273190);Science and Technology Plan Projects of Hunan Province, China(2014TT2026)
Corresponding Authors: Qiang-Guo LI,Hui-Wen GU     E-mail: liqiangguo@163.com;gugo@yangtzeu.edu.cn
Cite this article:

Xu LI,Qiang-Guo LI,Jian-Hong JIANG,Hui-Wen GU,Chuan-Hua LI,Sheng-Xiong XIAO,Xia LI. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter. Acta Physico-Chimica Sinca, 2017, 33(6): 1114-1122.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702213     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1114

Fig 1 Transversal view of the microcombustion bomb 1-valve for filling with oxygen and electrical positive terminal nut; 2-floating needle; 3-valve O-ring seal; 4-stainless steel spring; 5, 11-Teflon insulation sleeve; 6-head of the bomb; 7-electrical negative terminal nut; 8-cover of the bomb; 9-pressure ring; 10-principal O-ring seal; 12-body of the bomb; 13-platinum electrode; 14-platinum crucible; 15-platinum lining; 16-stirring blade; 17-mounting hole for heating resistor
Fig 2 Diagram of calorimeter for measurement of heat of combustion 1-computer; 2-power amplifier or A/D converter; 3-Wheatston bridge; 4-precision current source; 5-precision time counter; 6-thermostat bath; 7-calorimetric temperature sensor; 8-refrigerating circulator; 9-inlet drainage system; 10-thermostat bath stirrer; 11-thermostat bath temperature sensor; 12-Wheatston bridge; 13-proportional controller; 14-thermostat bath heater; 15-diving magnetic stirrer; 16-glass stirring rod; 17-silver vacuum Dewar; 18-microcombustion bomb; 19-Wirewound resistance heater; 20-microcombustion bomb bracket; 21-aluminium lining heat insulating radiation baffle; 22-PTFE hanger; 23-motor for rotary; 24-PTFE Dewar cover; 25-collector ring; 26-bomb ignition unit
Experimental temperature/K Average potential and standard deviation/(mV·K-1)
298.350 20.8506 ± 0.0098
298.250 10.4089 ± 0.0010
298.150 -0.0309 ± 0.0064
298.050 -10.4727 ± 0.0082
297.950 -20.9125 ± 0.0043
Table 1 Relationship between temperature and electric potential of sensor
No. t/sa ΔTign/mVb ΔTw/mVc Uign/Jd Uignθ/Je Ccalor/(J·K-1)f
1 29.250 1.6706 1.7183 15.7871 15.7857 986.3361
2 29.375 1.6585 1.7242 15.6859 15.6845 987.1608
3 29.515 1.6635 1.7309 15.7470 15.7456 988.0271
4 29.671 1.6647 1.7412 15.7479 15.7465 987.3800
5 29.671 1.6575 1.7401 15.6897 15.6883 987.9958
6 29.781 1.6780 1.7467 15.8824 15.8810 987.9123
7 29.437 1.6527 1.7265 15.6432 15.6419 987.9541
8 29.593 1.6656 1.7369 15.7539 15.7525 987.2234
9 29.421 1.6650 1.7256 15.7583 15.7570 987.8601
10 29.510 1.6622 1.7299 15.7411 15.7397 988.4342
ave. 15.7423 987.6305
std. ±0.0648 ±0.6054
Table 2 Ignition energy of platinum wire and the energy equivalent of the calorimet
No. mC/ga t/sb ΔTc/mVc ΔTw/mVd Utotal/Je Utotalθ/Jf ΔUHNO3θ/Jg Uignθ/Jh cUCθ/(J?g-1)i
1 0.00141 89.702 4.0822 5.2762 38.5068 38.5504 0.0000 15.7423 16142.84
2 0.00102 70.968 3.4100 4.1840 32.1958 32.1931 0.0000 15.7423 16128.24
3 0.00104 60.796 3.4667 3.5976 32.5217 32.5190 0.0000 15.7423 16131.44
4 0.00145 70.937 4.1449 4.1776 39.1296 39.1265 0.0000 15.7423 16127.03
5 0.00134 69.390 3.9487 4.0760 37.3584 37.3555 0.0000 15.7423 16129.25
6 0.00140 68.484 4.0601 4.0236 38.3453 38.3422 0.0000 15.7423 16142.79
7 0.00114 57.687 3.6485 3.4193 34.1409 34.1381 0.0000 15.7423 16136.67
8 0.00143 68.546 4.0987 4.0119 38.8255 38.8224 0.0000 15.7423 16139.93
9 0.00130 66.562 3.9023 3.9217 36.7306 36.7276 0.0000 15.7423 16142.54
10 0.00143 66.703 4.1109 3.9230 38.8026 38.7994 0.0000 15.7423 16123.85
ave. 16134.46
std. ±7.32
Table 3 Standard massic energy of combustion of cotton
No. mB/ga mC/gb t/sc ΔTc/mVd ΔTw/mVe Utotal/Jf Utotalθ/Jg ΔUHNO3θ/Jh Uignθ/Ji cUCθ/(J?g-1)j cUBθ0/(J?g-1)k
1 0.00779 0.00153 500.953 25.3884 28.6824 246.1619 246.1469 0.0000 15.7423 24.6857 26408.07
2 0.00968 0.00154 630.500 30.1968 35.6685 296.3707 296.3551 0.0000 15.7423 24.8471 26422.08
3 0.00754 0.00119 482.593 24.0120 27.4809 234.0892 234.075 0.0000 15.7423 19.2000 26410.17
4 0.00829 0.00157 530.718 26.7884 30.3092 260.1990 260.1837 0.0000 15.7423 25.3311 26430.68
5 0.00954 0.00126 615.640 29.2362 34.7110 288.1816 288.1662 0.0000 15.7423 20.3294 26425.00
6 0.01088 0.00136 700.922 33.1155 39.6142 325.2769 325.2611 0.0000 15.7423 21.9429 26431.46
7 0.00743 0.00151 470.608 24.4127 26.9918 236.4905 236.4761 0.0000 15.7423 24.3630 26429.45
8 0.01119 0.00132 720.594 33.9895 40.8027 332.7640 332.7497 0.0000 15.7423 21.2975 26426.26
9 0.00725 0.00136 450.562 23.7179 25.8232 229.3338 229.3196 0.0000 15.7423 21.9428 26432.34
10 0.01303 0.00135 730.484 38.9763 41.3104 382.1096 382.0942 0.0000 15.7423 21.7815 26444.39
ave. 26425.99
std. ±10.70
Table 4 Standard massic energy of combustion of benzoic acid
No. mS/ga mC/gb t/sc ΔTc/mVd ΔTw/mVe Utotal/Jf Utotalθ/Jg ΔUHNOθ3/Jh Uignθ/Ji cUCθ/(J?g-1)j cUBθ/(J?g-1)k
1 0.01983 0.00155 550.967 29.8941 31.4078 291.1244 291.1242 0.0000 15.7423 25.0084 12626.00
2 0.01931 0.00159 531.031 29.326 30.3070 285.2551 285.2543 0.0000 15.7423 25.6538 12622.06
3 0.02049 0.00143 560.953 30.4849 31.9103 297.4957 297.4960 0.0000 15.7423 23.0723 12624.76
4 0.01902 0.00117 535.609 28.2882 30.6055 274.8258 274.8238 0.0000 15.7423 18.8773 12629.03
5 0.01897 0.00138 511.609 28.6976 29.3871 277.3514 277.3492 0.0000 15.7423 22.2656 12616.83
6 0.01845 0.00121 492.484 27.6321 28.1841 268.0427 268.0400 0.0000 15.7423 19.5227 12616.53
7 0.01804 0.00159 485.546 27.8260 27.8761 269.0618 269.0583 0.0000 15.7423 25.6538 12619.86
8 0.01982 0.00141 540.531 29.8762 31.0401 288.8194 288.8183 0.0000 15.7423 22.7496 12629.99
9 0.01984 0.00158 550.968 29.8962 31.3714 291.4824 291.4814 0.0000 15.7423 25.4924 12613.24
10 0.01951 0.00172 540.531 29.9223 31.0026 289.6143 289.6127 0.0000 15.7423 27.7513 12615.02
ave. 12621.97
std. ±5.30
Table 5 Standard massic energy of combustion of succinic acid
Fig 3 Principle of equal area method
Fig 4 Voltage-time curve during heating (or burning)
Fig 5 Linear relationship between electric potential and temperature
1 Randzio S. L. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 2002, 98, 157.
2 Tang H. F. ; Huang Z. Y. ; Xiao M. ; Liang M. ; Chen L Y. Acta Phys. Chim. Sin. 2016, 32 (12), 2891.
2 汤焕丰; 黄在银; 肖明; 梁敏; 陈栎莹. 物理化学学报, 2016, 32 (12), 2891.
3 Korchagina E. N. Measurement Techniques. 1998, 41 (11), 1057.
4 An X. W. ; He J. Thermochim. Acta 2000, 352-353, 273.
5 An X. W. ; He J. ; Bi Z. J.Chem. Thermodyn. 1996, 28, 1115.
6 Parker W. ; Steele W. V. ; Stirling W. ; Watt I. J.Chem. Thermodyn. 1975, 7, 795.
7 Metzger R. M. ; Kuo C. S. ; Arafat E. S. J.Chem. Thermodyn. 1983, 15, 841.
8 Beckhaus H. D. ; Riichardt C. ; Lagerwall D. R. ; Paquette L. A. ; WahlJ F. ; Prinzbach H. J.Am. Chem. Soc. 1994, 116, 11775.
9 Diogo H. P. ; Minas da Piedade M. E. J.Chem. Thermodyn. 1995, 27, 197.
10 Sabbah R. ; Aguilar A.R. J.Chem. Thermodyn. 1995, 27, 685.
11 Nagano Y. ; Sugimoto T. J.Therm. Anal. Calorim. 1999, 57, 867.
12 Sakiyama M. ; Kiyobayashi Tetsu. J.Chem. Thermodyn. 2000, 32, 269.
13 Rojas-Aguilar A. J.Chem. Thermodyn. 2002, 34, 1729.
14 Camarillo E. A. ; Flores H. J.Chem. Thermodyn. 2006, 38, 1269.
15 da Silva M. A. V. R. ; Pilcher G. ; Santos L. M. N. B. F. ; Lima L. M. S. S. J.Chem. Thermodyn. 2007, 39, 689.
16 Yu H.G. ; Liu Y. ; Tan Z.C. ; Dong J.X. ; Zou T.J. ; Huang X.M. ; Qu S.S. Thermochim. Acta 2003, 401, 217.
17 Juan Carlos M. P. ; Liliana G. G. Rev. Sci. Instrum. 2007, 78, 046105.
18 Vargas E. F. ; Moreno J. C. ; Forero J. ; Parra D. F. J.Therm. Anal. Calorim. 2008, 91, 659.
19 Mo K.W. J.Changsha Communications Institute 1995, 11, 34.
19 莫克威. 长沙交通学院学报, 1995, 11, 34.
20 Yan S. S. ; Lu G. ; Xiao G. C. Acta Physica Temperature Humilis Sinica. 1980, 2, 65.
20 阎守胜; 陆果; 熊光成. 低温物理, 1980, 2, 65.
21 Hubbard, W. N.; Scott, D. W.; Waddington, G. Experimental Thermochemistry; Rossini, F. D. Ed. Interscience Publisher:NewYork, 1956, pp 75-103
22 Good W. D. ; Smith N. K. J. J.Chem. Eng. Data 1969, 14, 102.
23 Steele W. V. J.Chem. Thermodyn. 1978, 10, 445.
24 Chen J. T. ; Di Y. Y. ; Tan Z. C. ; Zhang H. T. ; Sun L.X. Chem. Pap. 2005, 59, 225.
25 Jessup, R. S. Precise Measurement of Heat of Combustion with a Bomb Calorimeter. National Bureau of Standards Monograph 7.Issued February 26, 1960, pp 12-13
26 National Institute of Standard and Technology, Certificate of Analysis, Standard Reference Material 39j, Benzoic Acid Calorimetric Standard, NIST, Standard Reference Material 2007. via the Internet at http://www.nist.gov/srm.
27 Rojas A. ; Valdés A. J. Chem. Thermodyn. 2003, 35, 1309.
[1] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2232-2240.
[2] HAO Xue-Liang, ZHAO Jin-Ge, GAO Jian-Rong, HAN Liang. Synthesis and Photoelectric Properties of Carbazole Sensitizing Dyes Based on a Benzoic Acid Acceptor[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1977-1984.
[3] YE Yong-Wei, WANG Xi, ZHENG Wan-Fang, LI Mei-Chao, MA Chun-An. Electrooxidation Reaction of 3-Bromobenzoic Acid on Pt Electrode[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 553-558.
[4] ZHANG Rui-Xia, GAO Bao-Jiao, WEI Xiao-Peng. Structure and Florescence Emission Properties of a Polymer-Rare Earth Complex Composed of Aryl Carboxylic Acid-Functionalized Polysulfone and Tb(III)[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 223-231.
[5] ZHAO Feng-Ming; SHEN Hai-Ping; CHEN Zhao-Yang; MA Chun-An. Electrocatalytic Reduction of Maleic Acid at Bundles of TiO2 Anodization Film[J]. Acta Physico-Chimica Sinca, 2008, 24(11): 2139-2142.
[6] XIONG Jing; CAI Xiao-Qing; YIN Ping; HU Mao-Lin. Crystal Structure, Spectroscopic and Thermal Properties of 2-(toluene-4-sulfonylamino)-benzoic Acid[J]. Acta Physico-Chimica Sinca, 2007, 23(08): 1183-1188.
[7] CHEN Yu-yin; LIU Fan; LIU Yong-chun. A Model of Stoichiometric Displacement for the Adsorption of Benzoic Acid and Benzene by Silica Gel from Cyclohexane Solution[J]. Acta Physico-Chimica Sinca, 2005, 21(11): 1211-1216.
[8] Gao Gai-Ling;Fang Yu;Wang Ming-Zhen;Hu Dao-Dao. Properties of Y2O3:Eu Nanocrystals Prepared by Thermodecomposition of Benzoic Acid[J]. Acta Physico-Chimica Sinca, 2002, 18(05): 399-413.
[9] Hu Xin-Gen, Lin Rui-Sen, Zong Han-Xing. Enthalpies and Entropies of Dissolution and Dissociation of Benzoic Acid in EtOH-H2O and i-PrOH-H2O Mixtures[J]. Acta Physico-Chimica Sinca, 1999, 15(09): 838-844.
[10] Xia Chun-Gu, Li Zhen, Wei Chi-Li, Li Shu-Ben. Rapid-Mixing Stopped-Flow Studies of lron Porphrin Enzyme-Mimic Systems[J]. Acta Physico-Chimica Sinca, 1999, 15(03): 253-258.
[11] Ke Jie,Jin Shun-Zi,Han Bu-Xing,Yan Hai-Ke,Shen De-Yan. FTIR Study on the Interactions between Benzoic Acid and Ethanol,Benzoic Acid and Dimethyl Sulfoxide in Supercritical CO2[J]. Acta Physico-Chimica Sinca, 1996, 12(11): 986-989.
[12] Nan Yan-Qing, Yu Qing-Sen, Zong Han-Xing, Lin Rui-Sen. Ionization Thermodynamics of Chlorobenzoic Acids in Water-DMF Mixtures at 298.15K[J]. Acta Physico-Chimica Sinca, 1995, 11(01): 92-95.
[13] Jiang Yun-Bao, Wang Xiu-Juan. Effect of Aliphatic Alcohol on the Twisted Intramolecular Charge Transfer in Charged Micelle Studied by Dual Fluorescence[J]. Acta Physico-Chimica Sinca, 1994, 10(09): 856-859.
[14] Zheng Ji-Min, Che Yun-Xia, Wang Ru-Ji, Wang Hong-Gen. Crystal Structure of 1:1 Adduct of Glycine and m-nitrobenzoic Acid[J]. Acta Physico-Chimica Sinca, 1994, 10(01): 64-68.