Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1114-1122    DOI: 10.3866/PKU.WHXB201702213
Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter
LI Xu1, LI Qiang-Guo1, JIANG Jian-Hong1, GU Hui-Wen2, LI Chuan-Hua1, XIAO Sheng-Xiong1, LI Xia1
1 College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, P. R. China;
2 College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
Download:   PDF(780KB) Export: BibTeX | EndNote (RIS)      


The SRC-100 type solution-reaction calorimeter was improved to a more precise and versatile isoperibol combustion-solution-reaction microcalorimeter. The energy equivalent of the calorimeter was calibrated to be Ccalor=(987.63±0.61)J·K-1 by the electric calibration method. The standard massic energy of combustion of benzoic acid and succinic acid were determined by the developed isoperibol combustion-solution-reaction microcalorimeter as △CUm,Bθ(cr,T=298.15K)=-(26425.99±10.70)J·g-1 and △CUm,Sθ(cr,T=298.15K)=-(12621.97±5.30)J·g-1, respec-tively. The uncertainty of the measurement was less than 0.04% and the accuracy was higher than 0.05%.

Key wordsCombustion-solution-reaction microcalorimeter      Standard massic energy of combustion      Benzoic acid      Succinic acid     
Received: 26 December 2016      Published: 21 February 2017
MSC2000:  O642  

The project was supported by the National Natural Science Foundation of China (21273190) and Science and Technology Plan Projects of Hunan Province, China (2014TT2026).

Corresponding Authors: LI Qiang-Guo, GU Hui-Wen     E-mail:;
Cite this article:

LI Xu, LI Qiang-Guo, JIANG Jian-Hong, GU Hui-Wen, LI Chuan-Hua, XIAO Sheng-Xiong, LI Xia. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter. Acta Phys. -Chim. Sin., 2017, 33(6): 1114-1122.

URL:     OR

(1) Randzio, S. L. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 2002, 98, 157. doi:10.1039/B111196P

(2) Tang, H. F.; Huang, Z. Y.; Xiao, M.; Liang M.; Chen, L.Y. Acta Phys. Chim. Sin. 2016, 32 (12), 2891[汤焕丰, 黄在银, 肖明, 梁敏, 陈栎莹. 物理化学学报, 2016, 32 (12), 2891.] doi:10.3866/PKU.WHXB201609133

(3) Korchagina, E. N. Measurement Techniques 1998, 41(11), 1057. doi:10.1007/BF02503874

(4) An, X. W.; He, J. Thermochim. Acta 2000, 352-353, 273. doi:10.1016/S0040-6031(99)00476-1

(5) An, X. W.; He, J.; Bi, Z. J. Chem. Thermodyn. 1996, 28, 1115. doi:10.1006/jcht.1996.0097

(6) Parker, W.; Steele, W. V.; Stirling, W.; Watt, I. J. Chem. Thermodyn. 1975, 7, 795. doi:10.1016/0021-9614(75)90256-6

(7) Metzger, R. M.; Kuo, C. S.; Arafat, E. S. J. Chem. Thermodyn. 1983, 15, 841. doi:10.1016/0021-9614(83)90090-3

(8) Beckhaus, H. D.; Riichardt, C.; Lagerwall, D. R.; Paquette, L. A.; WahlJ, F.; Prinzbach, H. J. Am. Chem. Soc. 1994, 116 , 11775. doi: 10.1021/ja00105a018

(9) Diogo, H. P.; Minas da Piedade, M. E.. J. Chem. Thermodyn. 1995, 27, 197. doi:10.1006/jcht.1995.0016

(10) Sabbah, R.; Aguilar, A.R. J. Chem. Thermodyn. 1995, 27, 685. doi:10.1006/jcht.1995.0070

(11) Nagano, Y.; Sugimoto, T. J. Therm. Anal. Calorim. 1999, 57, 867. doi:10.1023/A:1010166813912

(12) Sakiyama, M.; Kiyobayashi, Tetsu. J. Chem. Thermodyn. 2000, 32, 269. doi:10.1006/jcht.1999.0602

(13) Rojas-Aguilar, A. J. Chem. Thermodyn. 2002, 34, 1729. doi:10.1016/S0021-9614(02)00257-4

(14) Camarillo, E. A.; Flores, H. J. Chem. Thermodyn. 2006, 38, 1269. doi:10.1016/j.jct.2006.03.001

(15) da Silva, M. A. V. R.; Pilcher, G.; Santos, L. M. N. B. F.; Lima, L. M. S. S. J. Chem. Thermodyn. 2007, 39, 689. doi:10.1016/j.jct.2006.10.013

(16) Yu, H.G.; Liu, Y.; Tan, Z.C.; Dong, J.X.; Zou, T.J.; Huang, X.M.; Qu, S.S. Thermochim. Acta 2003, 401, 217. doi:10.1016/S0040-6031(02)00566-X

(17) Juan, Carlos M. P.; Liliana, G. G.. Rev. Sci. Instrum. 2007, 78, 046105. doi:10.1063/1.2727485

(18)Vargas, E. F.; Moreno, J. C.; Forero, J.; Parra, D. F. J. Therm. Anal. Calorim. 2008, 91, 659. doi:10.1007/s10973-007-7613-y

(19) Mo, K.W. J. Changsha Communications Institute 1995, 11, 34[莫克威. 长沙交通学院学报, 1995, 11, 34.]

(20) Yan, S. S.; Lu, G.; Xiao, G. C. Acta Physica Temperature Humilis Sinica. 1980, 2, 65[阎守胜, 陆果, 熊光成. 低温物理, 1980, 2, 65.]

(21) Hubbard, W. N.; Scott, D. W.; Waddington, G. Experimental Thermochemistry; Rossini, F. D. Ed. Interscience Publisher:NewYork, 1956, pp 75-103

(22) Good, W. D.; Smith, N. K. J. Chem. Eng. Data 1969, 14, 102. doi:10.1021/je60040a036

(23) Steele, W. V. J. Chem. Thermodyn. 1978, 10, 445. doi:10.1016/0021-9614(78)90092-7

(24) Chen, J. T.; Di, Y. Y.; Tan, Z. C.; Zhang, H. T.; Sun, L.X. Chem. Pap. 2005, 59, 225

(25) Jessup, R. S. Precise Measurement of Heat of Combustion with a Bomb Calorimeter. National Bureau of Standards Monograph 7.Issued February 26, 1960, pp 12-13

(26) Standard Reference Material® 39j, Certificate of Analysis, National Institute of Standards & Technology 2007, pp 1-4

(27) Rojas, A.; Valdés, A. J. Chem. Thermodyn. 2003, 35, 1309. doi:10.1016/S0021-9614(03)00095-8

[1] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2232-2240.
[2] HAO Xue-Liang, ZHAO Jin-Ge, GAO Jian-Rong, HAN Liang. Synthesis and Photoelectric Properties of Carbazole Sensitizing Dyes Based on a Benzoic Acid Acceptor[J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1977-1984.
[3] YE Yong-Wei, WANG Xi, ZHENG Wan-Fang, LI Mei-Chao, MA Chun-An. Electrooxidation Reaction of 3-Bromobenzoic Acid on Pt Electrode[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 553-558.
[4] ZHANG Rui-Xia, GAO Bao-Jiao, WEI Xiao-Peng. Structure and Florescence Emission Properties of a Polymer-Rare Earth Complex Composed of Aryl Carboxylic Acid-Functionalized Polysulfone and Tb(III)[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 223-231.
[5] ZHAO Feng-Ming; SHEN Hai-Ping; CHEN Zhao-Yang; MA Chun-An. Electrocatalytic Reduction of Maleic Acid at Bundles of TiO2 Anodization Film[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2139-2142.
[6] XIONG Jing; CAI Xiao-Qing; YIN Ping; HU Mao-Lin. Crystal Structure, Spectroscopic and Thermal Properties of 2-(toluene-4-sulfonylamino)-benzoic Acid[J]. Acta Phys. -Chim. Sin., 2007, 23(08): 1183-1188.
[7] CHEN Yu-yin; LIU Fan; LIU Yong-chun. A Model of Stoichiometric Displacement for the Adsorption of Benzoic Acid and Benzene by Silica Gel from Cyclohexane Solution[J]. Acta Phys. -Chim. Sin., 2005, 21(11): 1211-1216.
[8] Gao Gai-Ling;Fang Yu;Wang Ming-Zhen;Hu Dao-Dao. Properties of Y2O3:Eu Nanocrystals Prepared by Thermodecomposition of Benzoic Acid[J]. Acta Phys. -Chim. Sin., 2002, 18(05): 399-413.
[9] Hu Xin-Gen, Lin Rui-Sen, Zong Han-Xing. Enthalpies and Entropies of Dissolution and Dissociation of Benzoic Acid in EtOH-H2O and i-PrOH-H2O Mixtures[J]. Acta Phys. -Chim. Sin., 1999, 15(09): 838-844.
[10] Xia Chun-Gu, Li Zhen, Wei Chi-Li, Li Shu-Ben. Rapid-Mixing Stopped-Flow Studies of lron Porphrin Enzyme-Mimic Systems[J]. Acta Phys. -Chim. Sin., 1999, 15(03): 253-258.
[11] Ke Jie,Jin Shun-Zi,Han Bu-Xing,Yan Hai-Ke,Shen De-Yan. FTIR Study on the Interactions between Benzoic Acid and Ethanol,Benzoic Acid and Dimethyl Sulfoxide in Supercritical CO2[J]. Acta Phys. -Chim. Sin., 1996, 12(11): 986-989.
[12] Nan Yan-Qing, Yu Qing-Sen, Zong Han-Xing, Lin Rui-Sen. Ionization Thermodynamics of Chlorobenzoic Acids in Water-DMF Mixtures at 298.15K[J]. Acta Phys. -Chim. Sin., 1995, 11(01): 92-95.
[13] Jiang Yun-Bao, Wang Xiu-Juan. Effect of Aliphatic Alcohol on the Twisted Intramolecular Charge Transfer in Charged Micelle Studied by Dual Fluorescence[J]. Acta Phys. -Chim. Sin., 1994, 10(09): 856-859.
[14] Zheng Ji-Min, Che Yun-Xia, Wang Ru-Ji, Wang Hong-Gen. Crystal Structure of 1:1 Adduct of Glycine and m-nitrobenzoic Acid[J]. Acta Phys. -Chim. Sin., 1994, 10(01): 64-68.