Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1253-1260    DOI: 10.3866/PKU.WHXB201702212
Article     
Synthesis and Properties of a Series of Dinaphthosiloles
QU Hong-Mei1, CHONG Ze-Peng1, CHEN Xu2, MEN Yi-Can1, SHEN Hai-Jiao1
1 Key Laboratory of Systems Bioengineering(Ministry of Education), Tianjin University, Tianjin 300072, P. R. China;
2 Tianjin Kingsrial S & T Company, Limited, Tianjin 300384, P. R. China
Download:   PDF(1388KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Siloles constitute an important emerging class of photoluminescent materials. A series of compounds consisting of silole cores and fused naphthalene were synthesized and characterized:6,6-dimethyl-1,2,3,4,8,9,10,11-octapropyl-6H-dinaphtho[2,3-b:2',3'-d]silole, 1,2,3,4,8,9,10,11-octabutyl-6,6-dimethyl-6H-dinaphtho[2,3-b:2',3'-d]silole, 6,6-diphenyl-1,2,3,4,8,9,10,11-octapropyl-6H-dinaphtho[2,3-b:2',3'-d]silole, and 1,2,3,4,8,9,10,11-octabutyl-6,6-diphenyl-6H-dinaphtho[2,3-b:2',3'-d]silole. These dinaphthalene-fused siloles were synthesized from diiodonaphthalene, which was prepared by a direct coupling method. Subsequent reaction in the presence of n-butyllithium yielded 3,3'-diiodo-2,2'-binaphthalene. Direct substitution of two chloride ions from Ph2SiCl2 or Me2SiCl2 with 3,3'-dilithio-2,2'-binaphthalene then yielded the multi-substituted silole. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to characterize the structures of the siloles. Their optical and electronic properties were investigated using ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and density functional theory calculations. The dinaphthalene-fused siloles exhibited similar absorption and emission peaks. Their deep highest occupied molecular orbital level at approximately -5.5 eV indicated that they were chemically stable. Differential scanning calorimetry and thermogravimetric analysis indicated that the siloles were stable up to 309℃. A multilayer electroluminescent device was fabricated using 1,2,3,4,8,9,10,11-octabutyl-6,6-dimethyl-6H-dinaphtho[2,3-b:2',3'-d]silole as a light-emitting layer. The resulting device produced bright blue emission, indicating that these siloles may be suitable materials in organic light-emitting devices.



Key wordsDinaphthosilole      Coupling reaction      Lithiation reaction      Cyclic voltammetry      Thermogravimetric analysis      Organic electroluminescent device     
Received: 21 December 2016      Published: 21 February 2017
MSC2000:  O649  
Fund:  

The project was supported by the National Natural Science Foundation of China (21102099).

Corresponding Authors: QU Hong-Mei     E-mail: ququhongmei@126.com
Cite this article:

QU Hong-Mei, CHONG Ze-Peng, CHEN Xu, MEN Yi-Can, SHEN Hai-Jiao. Synthesis and Properties of a Series of Dinaphthosiloles. Acta Phys. -Chim. Sin., 2017, 33(6): 1253-1260.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201702212     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I6/1253

(1) Chen, H. Y.; Hou, J.; Hayden, A. E.; Yang, H.; Houk, K. N.; Yang, Y. Adv. Mater. 2010, 22 (3), 371. doi:10.1002/adma.200902469

(2) Chen, B.; Jiang, Y.; Chen, L.; Nie, H.; He, B.; Lu, P.; Sung, H. H. Y.; Williams, I. D.; Kwork, H. S.; Qin, A.; Zhao, Z.; Tang, B. Z. Chem.-Eur. J. 2014, 20 (7), 1931. doi: 10.1002/chem.201303259

(3) Shimizu, M.; Mochida, K.; Hiyama, T. J. Phys. Chem. C 2011, 115 (22), 11265. doi:10.1021/jp201168x

(4) Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T. J. Phys. Chem. C 2010, 114 (21), 10004. doi: 10.1021/jp103410x

(5) Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc. 2005, 127 (33), 11661. doi:10.1021/ja052582w

(6) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130 (24), 7670. doi:10.1021/ja800424m

(7) Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130 (48), 16144. doi: 10.1021/ja806687u

(8) Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133 (12), 4250. doi:10.1021/ja200314m

(9) Chen, H. Y.; Lam, W. Y.; Luo, J. D.; Ho, Y. L.; Tang, B. Z.; Zhu, D. B.; Wong, M.; Kwok, H. S. Appl. Phys. Lett. 2002, 81 (4), 574. doi:10.1063/1.1495542

(10) Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J. Am. Chem. Soc. 1996, 118 (47), 11974. doi:10.1021/ja962829c

(11) Liu, M. S.; Luo, J.; Jen, A. K. Y. Chem. Mater. 2003, 15 (18), 3496. doi: 10.1021/cm030063r

(12) Chen, H.; Yang, T.; Li, J. W.; Zhang, X. W.; Qian, Y.; Xie, L. H.; Huang, W. Acta Phys. -Chim. Sin. 2016, 26 (9), 2346.[陈昊, 杨涛, 李杰伟, 张新稳, 钱妍, 解令海, 黄维. 物理化学学报, 2016, 26 (9), 2346.] doi:10.3866/PKU.WHXB201605163

(13) Wang, F.; Luo, J.; Yang, K. X.; Chen, J. W.; Huang, F.; Cao, Y. Macromolecules 2005, 38(6), 2253. doi:10.1021/ma047561I

(14) Ren, Y.; Lam, J. W. Y.; Dong, Y. Q.; Tang, B. Z.; Wong, K. S. J. Phys. Chem. B 2005, 109(3), 1135. doi:10.1021/jp046659z

(15) Qi, Q. J.; Wu, X. M.; Hua, Y. L.; Hou, Q. C.; Dong, M. S.; Mao, Z. Y.; Yin, B.; Yin, S. G. Org. Electron. 2010, 11 (3), 503. doi:10.1016/j.orgel.2009.11.032

(16) Wang, M.; Zhang, D. Q.; Zhang, G. X.; Tang, Y. L.; Wang, S.; Zhu, D. B. Anal. Chem. 2008, 80 (16), 6443. doi:10.1021/ac801020v

(17) Taydakov, I. V.; Akkuzina, A. A.; Avetisov, R. I.; Khomyako, A. V.; Saifutyarov, R. R.; Avetissov, I. C. J. Lumin. 2016, 177, 31. doi:10.1016/j.jlumin.2016.04.017

(18) Du, X. B.; Wang, Z. Y. Chem. Commun. 2011, 47, 4276. doi:10.1039/C1CC00066G

(19) Yin, S. C.; Zhang, J.; Feng, H. K.; Zhao, Z. J.; Xu, L. W.; Qiu, H. Y.; Tang B. Z. Dyes Pigm. 2012, 95 (2), 174. doi:10.1016/j.dyepig.2012.04.007

(20) Zhang, Q. W.; An, K.; He, W. Angew. Chem. 2014, 126 (22), 5773. doi: 10.1002/ange.201400828

(21) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17 (12), 3102. doi: 10.1021/acs.orglett.5b01373

(22) Ohshita, J.; Lee, K. H.; Kimura, K.; Kunai, A. Organometallics, 2004, 23 (23), 5622. doi: 10.1021/om049656h

(23) Ohshita, J.; Kai, H.; Sumida, T.; Kunai, A.; Adachi, A.; Sakamaki, K.; Okita, K. J. Organomet. Chem. 2002, 642 (1-2), 137. doi:10.1016/S0022-328X(01)01257-8

(24) Kunai, A.; Ohshita, J.; Iida, T.; Kanehara, K.; Adachi, A.; Okita, K. Synth. Met. 2003, 137(1-3), 1007. doi:10.1016/S0379-6779(02)00854-8

(25) Song, X. N.; Wang, G. W.; Chang, Y.; Ma, Y.; Wang, C. K. Acta Phys. -Chim. Sin. 2016, 32 (4), 943.[宋秀能, 王广伟, 常燕, 马勇, 王传奎. 物理化学学报, 2016, 32 (4), 943.] doi:10.3866/PKU.WHXB201601291

(26) Liang, Y.; Geng, W. Z.; Wei, J. N.; Xi, Z. F. Angew. Chem.-Ger. Edit. 2012, 124 (8), 1970. doi: 10.1002/ange.201108154

(27) Volz, H.; Kowarsch, H. J. Organomet. Chem. 1977, 136 (2), c27. doi: 10.1016/S0022-328X(00)82128-2

(28) Zhao, J. C.; Qiu, D. F.; Shi, J. W.; Wang, H. J. Org. Chem. 2012, 77 (6), 2929. doi: 10.1021/jo202111z

(29) Yasuike, S.; Hagiwara, J.; Danjo, H.; Kawahata, M.; Kakusawa, N.; Yamaguchi, K.; Kurita, J. Heterocycles, 2009, 78 (12), 3001. doi:10.3987/COM-09-11812

(30) Bayrak, R.; Akçay, H. T.; Durmu?, M.; De?irmencio?lu, ?. J. Organomet. Chem. 2011, 696 (23), 3807. doi:10.1016/j.jorganchem.2011.09.002

(31) Zhao, Z. J.; Liu, D. D.; Mahtab, F.; Xin, L. Y.; Shen, Z. F.; Yu, Y.; Chan, C. Y. K.; Lu, P.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Yang, B.; Ma, Y. G.; Tang, B. Z. Chem.-Eur. J. 2011, 17 (21), 5998. doi:10.1002/chem.201003382

(32) Yamaguchi, S.; Jin, R. Z.; Tamao, K. J. Organomet. Chem. 1998, 559 (1-2), 73. doi: 10.1016/S0022-328X(98)00425-2

(33) Siddiqui, S. A.; Al-Hajry, A.; Al-Assiri, M. S. Int. J. Quantum Chem. 2016, 116 (5), 339. doi: 10.1002/qua.25034

(34) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96 (1), 135. doi:10.1021/j100180a030

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[2] WU Xiao-Ying, YANG Li-Kun, YAN Hui, YANG Fang-Zu, TIAN Zhong-Qun, ZHOU Shao-Min. Electrochemical Nucleation of Au on n-Type Semiconductor Silicon Electrode Surface[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1708-1714.
[3] PENG Zhong, YAN Wen-Yi, WANG Shao-Na, ZHENG Shi-Li, DU Hao, ZHANG Yi. Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 67-74.
[4] SHI Ji-Peng, YANG Fang-Zu, TIAN Zhong-Qun, ZHOU Shao-Min. Electrocrystallization of Cu-Sn Alloy on Copper Electrode Surface[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2579-2584.
[5] WANG Fang, SHENG Shen-Jun, GUO Ge-Pu, MA Qing-Yu. Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2505-2512.
[6] SONG Han, WANG Na-Na, LI Yue, RUAN Wen-Juan. Synthesis, Characterization and Properties of Terminal Alkynylate Modified Salen-Type Complexes[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2300-2307.
[7] LIU Bei-Ping, TAN Zhi-Cheng. Thermodynamic Properties of Nd(Gly)2Cl3·3H2O and Pr(Ala)3Cl3·3H2O[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 17-22.
[8] ZHANG Chao, AO Jian-Ping, WANG Li, JIANG Tao, SUN Guo-Zhong, HE Qing, ZHOU Zhi-Qiang, SUN Yun. Electrodepositied Gallium on Gallium and Copper/Indium Substratess[J]. Acta Phys. -Chim. Sin., 2012, 28(08): 1913-1922.
[9] JIN Rong-Rong, LI Li-Fang, XU Xue-Feng, LIAN Ying-Hui, ZHAO Fan. Layered Double Hydroxide Supported Palladium Nanoparticles for Electrocatalytic Oxidation of Hydrazine[J]. Acta Phys. -Chim. Sin., 2012, 28(08): 1929-1935.
[10] WANG Yan-Yan, JIANG Yan-Xia, SUSHAAndrei, ROGACH Andrey, SUN Shi-Gang. Effect of pH and Au Nanoparticles on Cytochrome c Investigated by Electrochemistry and UV-Vis Absorption Spectroscopy[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1127-1133.
[11] YAN Bing-Xi, LUO Sheng-Yun, SHEN Jie. Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 381-386.
[12] TU Xiao-Hua, CHU You-Qun, MA Chun-An. Electrochemical Behavior of Nitroaromatics on Pt Microelectrode in an Aprotic Medium[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2148-2152.
[13] BASLAK Canan, BINGOL Haluk, COSKUN Ahmet, ATALAY Tevfik. Synthesis of a Novel Thiadiazine Derivative and Electrochemical Properties for Pb2+ Transfer across Water/1,2-Dichloroethane Interface[J]. Acta Phys. -Chim. Sin., 2011, 27(08): 1859-1862.
[14] YUE Jun-Pei, YANG Fang-Zu, TIAN Zhong-Qun, ZHOU Shao-Min. Electrocrystallization of Pd-Ni Alloys on Glassy Carbon Electrode[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1446-1450.
[15] WANG Lian-Yan, LU Feng, WU Fu-Quan, GU Ren-Ao, YAO Jian-Lin, ZHANG Hai-Lu, DENG Zong-Wu. Electrosynthesis and Characterization of Metal Chelate Imprinted Poly-o-Phenylenediamine Films[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1451-1456.