Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1189-1196    DOI: 10.3866/PKU.WHXB201702221
ARTICLE     
The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries
Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG*()
Download: HTML     PDF(3775KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this work, a series of Li-rich layered metal oxides (LLMO) as cathode materials for lithium ion batteries were prepared by the coprecipitation method. Various surfactants were introduced into the preparation of Al2O3-modified LLMO. The roles of surfactants were systematically investigated to reveal the mechanism of Al2O3 modification. The microstructure, morphology and electrochemical performance of the as-prepared samples were studied by the X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic discharge/charge measurement, cycling stability, rate capability and electrochemical impedance spectroscopies. The experimental results showed that Al2O3 nanoparticles were uniformly dispersed on the surface of LLMO by using N, N, N-trimethyl-1-dodecanaminium bromide (DTAB) as the surfactant. Al2O3-modified LLMO used DTAB as surfactant delivered the initial discharge capacity of 186 mAh·g-1 at the current density of 600 mA·g-1. After 500 cycles, the reversible discharge capacity was 132 mAh·g-1 with a satisfactory capacity retention of 71%. Moreover, the voltage fade of LLMO was greatly suppressed after Al2O3 modification, which exhibited superior electrochemical performances.



Key wordsSurfactant      Lithium-ion battery      Cathode material      Aluminum oxide      Li-rich layered metal oxide     
Received: 02 December 2016      Published: 22 February 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21403196);the National Natural Science Foundation of China(51572240);the National Natural Science Foundation of China(51677170);Natural Science Foundation of Zhejiang Province, China(LY15B030003);Natural Science Foundation of Zhejiang Province, China(LY16E070004);Natural Science Foundation of Zhejiang Province, China(LY17E020010);Ford University Research Program, China
Corresponding Authors: Wen-Kui ZHANG     E-mail: echem@zjut.edu.cn
Cite this article:

Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702221     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1189

Fig 1 Schematic illustration of the formation process of Al2O3-modified LLMO
Fig 2 XRD patterns of pristine LLMO and Al2O3-modified LLMO samples
Fig 3 SEM images and particle size distribution of (a) pristine LLMO and Al2O3-modified LLMO samples (b) S2, (c) S3, (d) S4
Fig 4 (a, b, c, d) TEM images and (e) EDS results of pristine LLMO and Al2O3-modified LLMO samples
Fig 5 Initial charge/discharge curves of (a) pristine LLMO; Al2O3-modified LLMO samples (b) S2, (c) S3, (d) S4 at a current density of 30 mA·g?1
Fig 6 Corresponding derivative (dQ/dV) plots of (a) pristine LLMO; Al2O3-modified LLMO samples (b) S2, (c) S3, (d) S4
Fig 7 Charge/discharge curves of pristine (a) pristine LLMO、Al2O3-modified LLMO samples (b) S2, (c) S3, (d) S4 at a current density of 600 mA·g-1
Fig 8 (a) Cycling performance, (b) rate performance, (c) Nyquist plots of pristine LLMO and Al2O3-modified LLMO samples
1 Berg E. J. ; Villevieille C. ; Streich D. J.Electrochem. Soc. 2015, 162 (14), A2468.
2 Gr?ger O. ; Gasteiger H. A. ; Suchsland J. P. JElectrochem. Soc. 2015, 162 (14), A2605.
3 Wang J. J. ; Sun X. L. Energ. Environ. Sci. 2012, 5 (1), 5163.
4 Jung S. K. ; Gwon H. ; Hong J. Adv. Energy Mater. 2014, 4 (1), 94.
5 Ates M. N. ; Mukerjee S. ; Abraham K. M. J.Electrochem. Soc. 2015, 162 (7), A1236.
6 Wang Z. ; Wu F. ; Su Y. F. Acta Phys. -Chim. Sin. 2012, 28 (4), 823.
6 王昭; 吴锋; 苏岳锋. 物理化学学报, 2012, 28 (4), 823.
7 Yan J. H. ; Liu X. B. ; Li B. Y. Rsc. Adv. 2014, 4 (108), 63268.
8 Hong J. ; Gwon H. ; Jung S. K. J.Electrochem. Soc. 2015, 162 (14), A2447.
9 Zheng J. M. ; Gu M. ; Xiao J. Nano Lett. 2013, 13 (8), 3824.
10 Croy J. R. ; Balasubramanian M. ; Gallagher K. G. Accounts Chem. Res 2015, 48 (11), 2813.
11 Chen C. J. ; Pang W. K. ; Mori T. J.Am. Chem. Soc. 2016, 138 (28), 8824.
12 Kou J. W. ; Wang Z. ; Bao L. Y. Acta Phys. -Chim. Sin. 2016, 32 (3), 717.
12 寇建文; 王昭; 包丽颖. 物理化学学报, 2016, 32 (3), 717.
13 Dianat A. ; Seriani N. ; Bobeth M. J.Mater. Chem. A 2013, 32 (32), 9273.
14 Zheng J. ; Deng S. N. ; Shi Z. C. J. Power Sources 2013, 221, 108.
15 Han S. J. ; Qiu B. ; Wei Z. J.Power Sources 2014, 268, 683.
16 Zou G. S. ; Yang X. K. ; Wang X. Y. J.Solid State Electr. 2014, 18 (7), 1789.
17 Liu Q. ; Yuan W. ; Gao X. P. J.Inorg. Mater. 2014, 29 (12), 1257.
17 刘沁; 袁文; 高学平. 无机材料学报, 2014, 29 (12), 1257.
18 Wu F. ; Zhang X. X. ; Zhao T. L. ACS Appl. Mater. Inter. 2015, 7 (6), 3773.
19 Wang Q. Y. ; Liu J. ; Murugan A. V. J. Mater. Chem. 2009, 19 (28), 4965.
20 Qiao Q. Q. ; Zhang H. Z. ; Li G. R. J.Mater. Chem. A 2013, 1 (17), 5262.
21 Zhang X. P. ; Sun S. W. ; Wu Q. J. Power Sources 2015, 282, 378.
22 Wu Y. ; Manthiram A. Electrochem. Solid State Lett. 2006, 9 (5), A221.
23 Zhang X. F. ; Belharouak I. ; Li L. Adv. Energy. Mater. 2013, 3 (10), 1299.
24 Lee E. S. ; Manthiram A. J.Mater. Chem. A 2014, 2 (11), 3932.
25 Thackeray M. M. ; Kang S. H. ; Johnson C. S. J. Mater. Chem. 2007, 17 (30), 3112.
26 Shi S. J. ; Tu J. P. ; Tang Y. Y. Electrochim. Acta 2013, 88 (2), 671.
27 Zhang X. P. ; Yin Y. F. ; Hu Y. W. Electrochim. Acta 2016, 193, 96.
28 Song B. H. ; Zhou C. F. ; Chen Y. Rsc. Adv. 2014, 4 (83), 44244.
[1] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[4] Wen-Rong ZHAO,Jing-Cheng HAO. Vesicle Gels of Magnetic Asymmetric Surfactants[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1655-1664.
[5] Mao-Zhang TIAN,Fan ZHANG,Cheng MA,De-Sheng MA,Ling-Xiang JIANG,Rong-Rong XUE,Ka-Er-Dun LIU,Jian-Bin HUANG. Viscosity Reduction of Heavy Oils of Different Viscosities Based on General Cationic/Anionic Surfactant Systems[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1665-1671.
[6] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[7] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[8] KONG Wei-Wei, GUO Shuang, ZHANG Yong-Min, LIU Xue-Feng. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1205-1213.
[9] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[10] BAI Guang-Yue, LIU Jun-Ling, WANG Jiu-Xia, WANG Yu-Jie, LI Yan-Na, ZHAO Yang, YAO Mei-Huan. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 976-983.
[11] ZHANG Ting, SHEN Jie. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 795-802.
[12] YUAN Hong, ZHANG Jing, WEI Xue-Hong, FANG Hui-Min, YUAN Shi-Fang, WU Li-Xin. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 407-412.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[14] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[15] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 18-27.