Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1223-1229    DOI: 10.3866/PKU.WHXB201702282
ARTICLE     
Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films
Li WANG1,2,Dan-Feng LU1,Ran GAO1,Jin CHENG1,Zhe ZHANG3,Zhi-Mei QI1,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
3 Beijing Jiaotong University, School of Computer and Information Technology, Beijing 100044, P. R. China
Download: HTML     PDF(2319KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanoporous gold films (NPGFs) are chemically robust and thermally stable, possessing large specific area and salient surface plasmon resonance (SPR) effect. With these features NPGFs are quite applicable for high-sensitivity SPR sensors. In this work, the SPR effect of NPGFs was theoretically analyzed and the dispersion relation of propagating surface plasmons at the NPGF/air interface was obtained. The optimal thickness of NPGF required for optimizing its SPR sensing performance was achieved to be about 60 nm. Large-area, uniform and ultrathin NPGFs were prepared by a two-step approach consisting of sputtering deposition and chemical dealloying. The SPR resonance band in the visible-near-infrared region and the sensing properties of NPGF were measured with the Kretschmann prism-coupling configuration. Porosity of the NPGF is determined to be about 0.38 by fitting the measured resonance wavelengths based on the combination of the Fresnel formula and the Bruggeman dielectric constant approximation theory. Since the non-modified NPGFs are hydrophilic and enable effective enrichment of bisphenol A (BPA) molecules in water, the NPGF-SPR sensor can easily detect BPA with concentrations as low as 5 nmol·L-1. After hydrophobilization of NPGFs, the sensor enables detection of trace benzo[a]pyrene (BaP) in water, with the detection limit of 1 nmol·L-1.



Key wordsNanoporous gold film      Propagating surface plasmon resonance      Enrichment      High sensitivity      Benzo[a]pyrene     
Received: 15 December 2016      Published: 28 February 2017
MSC2000:  O647  
Fund:  the National Key Basic Research Program of China (973)(2015CB352100);National Natural Science Foundation of China(61377064);National Natural Science Foundation of China(61401432);National Natural Science Foundation of China(61401019);National Natural Science Foundation of China(61675203);Research Equipment Development Project of Chinese Academy of Sciences(YZ201508)
Corresponding Authors: Zhi-Mei QI     E-mail: zhimei-qi@mail.ie.ac.cn
Cite this article:

Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films. Acta Physico-Chimica Sinca, 2017, 33(6): 1223-1229.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201702282     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1223

Fig 1 Schematic diagram of the wavelength-interrogated NPGF-SPR sensor platform NPGF: nanoporous gold film
Fig 2 Complex refractive index (RI) versus wavelength for NPGFs with different porosities (a) real part; (b) imaginary part
Fig 3 Dispersions for surface plasmons at the NPGF/air interface (a1-a9) and light in air (b1) and in prism (b3) and evanescent wave produced at φ = 45° with TIR (b2)
Fig 4 (a) Fresnel reflectance spectra for NPGFs of different thicknesses simulated with f2 = 0.3 and f3 = 0; (b) Thickness dependence of resonant wavelength shift for NPGFs of different porosities with f3 = 0.1
Fig 5 Scanning electron microscope (SEM) image of the NPGF
Fig 6 (a) Measured and (b) simulated SPR spectra of the NPGF
Fig 7 (a) SPR spectra of the NPGF measured at different BPA concentrations; (b) resonant wavelength shifts (ΔλR) as a function of the BPA concentratio
Fig 8 SPR spectra for the NPGF in air measured before and after modification with 1-dodecanethiol
Fig 9 (a) SPR spectra of the dodecanethiol-modified NPGF measured at different BaP concentrations; (b) Resonant wavelength shifts as a function of the BaP concentration
1 Sun Q. ; Ueno K. ; Yu H. ; Kubo A. ; Matsuo Y. ; Misawa H. Light Sci. Appl. 2013, 2, e118.
2 Ruffato G. ; Romanato F. ; Garoli D. ; Cattarin S. Opt. Exp. 2011, 19 (14), 13164.
3 Fan M. ; Wang Z. Y. ; Liu C. J.Acta Phys. -Chim. Sin. 2017, 33 (2), 435.
3 方敏; 王宗元; 刘昌俊. 物理化学学报, 2017, 33 (2), 435.
4 Njoki P. N. ; Lim I. S. ; Mott D. ; Park H. Y. ; Khan B. ; Mishra S. ; Sujakumar R. ; Luo J. ; Zhong C. J.Phys. Chem. C 2007, 111 (40), 14664.
5 Zhang Z. ; Lu D. F. ; Qi Z. M. Acta Phys. -Chim. Sin. 2013, 29 (4), 868.
5 张 喆 ; 逯 丹凤 ; 祁 志美 物理化学学报 2013, 29 (4), 868.
6 Wang Z. ; Yang M. ; Chen C. ; Zhang L. ; Zeng H. Sci. Report 2016, 6, 29611.
7 Biener J. ; Nyce G. W. ; Hodge A. M. ; Biener M. M. ; Hamza A. V. ; Maier S.A. Adv. Mater. 2008, 9999, 1.
8 Detsi E. ; Punzhin S. ; Rao J. ; Onck P. R. ; De Hosson J. T. M. ACS Nano 2012, 6, 3734.
9 Feng J. ; Wu J. Small 2012, 8, 3786.
10 Fang C. ; Bandaru N. M. ; Ellis A. V. ; Voelcker N. H. J.Mater. Chem. 2012, 22 (2952)
11 Cherevko S. ; Chung C. H. Electrochem. Commun. 2011, 13, 16.
12 Qian L. H. ; Chen M. W. Appl. Phys. Lett. 2007, 91 (8), 083105.
13 Fujita T. ; Guan P. ; Mckenna K. ; Lang X. ; Hirata A. ; Zhang L. ; Tokunaga T. ; Arai S. ; Yamamoto Y. ; Tanaka N. ; Ishikawa Y. ; Asao N. ; Yamamoto Y. ; Erlebacher J. ; Chen M. Nat. Mater. 2012, 11 (9), 775.
14 Qi Z. M. ; Honma I. ; Zhou H. Anal. Chem. 2006, 78, 1034- 1041.
15 Raether H. Springer Berlin Heidelberg 1988, 111 (1), 4- 13.
16 http//www.chemspider.com/Chemical-Structure.2246.html.
17 Wang X. ; Hao W ; Zhang H. ; Pan Y. ; Kang Y. ; Zhang X. ; Zou M. ; Tong P. ; Du Y. Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 2015, 139, 215.
18 Zhang Z. ; Lu D. F. ; Qi Z. M. J.Phys. Chem. C 2012, 116, 3342.
19 Bao L. ; Sheng P. ; Li J. ; Wu S. ; Cai Q ; Yao S. Analyst 2012, 137, 4010.
20 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. Sens. Actuators B 2015, 212, 200.
21 Feng A. ; Duan J. M. ; Du J. J. ; Jing C. Y. Environ. Chem. 2014, 1 (33), 47.
21 冯艾; 段晋明; 杜晶晶; 景传勇. 环境化学, 2014, 1 (33), 47.
22 Xie Y. F. ; Wang X. ; Ruan W. D. ; Song W. ; Zhao B. Spectrosc. Spect. Anal. 2011, 31 (9), 2320.
22 谢云飞; 王旭; 阮伟东; 宋薇; 赵冰. 光谱学与光谱分析, 2011, 31 (9), 2320.
[1] Dan-Hui LÜ,Dan-Cheng ZHU,Chuan-Hong JIN. Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1514-1519.
[2] ZHANG Zhe, LU Dan-Feng, QI Zhi-Mei. Surface Plasmon Resonance Sensing Properties of Nanoporous Gold Thin Films[J]. Acta Physico-Chimica Sinca, 2013, 29(04): 867-873.
[3] HU Yan-Bao, PENG Jing-Bo, GU Shuo, PEI Jian-Feng, ZOU Zhong-Mei. Molecular Docking in Xin-Ke-Shu Preparation's Multi-Target Effect on Coronary Heart Disease[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1257-1264.
[4] JIANG Yong, QIU Rong. Numerical Analysis of the Effect of Carbon Monoxide Addition on Soot Formation in an Acetylene/Air Premixed Flame[J]. Acta Physico-Chimica Sinca, 2010, 26(08): 2121-2129.
[5] LI Hui-Qin, JIN Cheng-Yu, FAN Wen-Chun, LIANG Qi. Surface Structure of Epoxy Resin Blended with PCL-b-PDMS-b-PCL[J]. Acta Physico-Chimica Sinca, 2009, 25(06): 1070-1074.
[6] Qiu Li-Mei;Jiang Yong;Liu Fen;Zhao Liang-Zhong. XPS Investigation of the Spherulite Surface for Poly(ε-caprolactone)/poly(vinyl chloride)[J]. Acta Physico-Chimica Sinca, 2004, 20(01): 47-49.
[7] Li Liao-Sha;Sui Zhi-Tong. Physical Chemistry Behavior of Enrichment Selectivity of TiO2 in Perovskite[J]. Acta Physico-Chimica Sinca, 2001, 17(09): 845-849.