Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1223-1229    DOI: 10.3866/PKU.WHXB201702282
Article     
Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films
WANG Li1,2, LU Dan-Feng1, GAO Ran1, CHENG Jin1, ZHANG Zhe3, QI Zhi-Mei1
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3 Beijing Jiaotong University, School of Computer and Information Technology, Beijing 100044, P. R. China
Download:   PDF(2319KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanoporous gold films (NPGFs) are chemically robust and thermally stable, possessing large specific area and salient surface plasmon resonance (SPR) effect. With these features NPGFs are quite applicable for high-sensitivity SPR sensors. In this work, the SPR effect of NPGFs was theoretically analyzed and the dispersion relation of propagating surface plasmons at the NPGF/air interface was obtained. The optimal thickness of NPGF required for optimizing its SPR sensing performance was achieved to be about 60 nm. Large-area, uniform and ultrathin NPGFs were prepared by a two-step approach consisting of sputtering deposition and chemical dealloying. The SPR resonance band in the visible-near-infrared region and the sensing properties of NPGF were measured with the Kretschmann prism-coupling configuration. Porosity of the NPGF is determined to be about 0.38 by fitting the measured resonance wavelengths based on the combination of the Fresnel formula and the Bruggeman dielectric constant approximation theory. Since the non-modified NPGFs are hydrophilic and enable effective enrichment of bisphenol A (BPA) molecules in water, the NPGF-SPR sensor can easily detect BPA with concentrations as low as 5 nmol·L-1. After hydrophobilization of NPGFs, the sensor enables detection of trace benzo[a]pyrene (BaP) in water, with the detection limit of 1 nmol·L-1.



Key wordsNanoporous gold film      Propagating surface plasmon resonance      Enrichment high sensitivity      Benzo[a]pyrene     
Received: 15 December 2016      Published: 28 February 2017
MSC2000:  O647  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2015CB352100), National Natural Science Foundation of China (61377064, 61401432, 61401019, 61675203), and Research Equipment Development Project of Chinese Academy of Sciences (YZ201508).

Corresponding Authors: QI Zhi-Mei     E-mail: zhimei-qi@mail.ie.ac.cn
Cite this article:

WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201702282     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I6/1223

(1) Sun, Q.; Ueno, K.; Yu, H.; Kubo, A.; Matsuo, Y.; Misawa, H. Light Sci. Appl. 2013, 2, e118. doi: 10.1038/lsa.2013.74
(2) Ruffato, G.; Romanato, F.; Garoli, D.; Cattarin, S. Opt. Exp. 2011, 19 (14), 13164. doi: 10.1364/OE.19.013164
(3) Fan, M.; Wang, Z. Y.; Liu, C. J. Acta Phys. -Chim. Sin. 2017, 33 (2), 435. [方敏, 王宗元, 刘昌俊. 物理化学学报, 2017, 33 (2), 435. ] doi: 10.3866/PKU.WHXB20161110
(4) Njoki, P. N.; Lim, I. S.; Mott, D.; Park, H. Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. J. Phys. Chem. C 2007, 111 (40), 14664. doi: 10.1021/jp074902z
(5) Zhang, Z.; Lu, D. F.; Qi, Z. M. Acta Phys. -Chim. Sin. 2013, 29 (4), 868.[张喆,逯丹凤,祁志美. 物理化学学报, 2013, 29 (4), 868.] doi: 10.3866/PKU.WHXB201302222
(6) Wang, Z.; Yang, M.; Chen, C.; Zhang, L.; Zeng H. Sci. Report 2016, 6, 29611. doi: 10.1038/srep29611.
(7) Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Adv. Mater. 2008, 9999, 1. doi: 10.1002/adma.200701899.
(8) Detsi, E.; Punzhin, S.; Rao, J.; Onck, P. R.; De Hosson, J. T. M. ACS Nano 2012, 6, 3734. doi: 10.1021/nn300179n
(9) Feng, J.; Wu, J. Small 2012, 8, 3786. doi: 10.1002/small.201201591
(10) Fang, C.; Bandaru, N. M.; Ellis, A. V.; Voelcker, N. H. J. Mater. Chem.2 012, 22, 2952. doi: 10.1039/c2jm14889g
(11) Cherevko, S.; Chung, C. H. Electrochem. Commun. 2011, 13, 16. doi: 10.1016/j.elecom.2010.11.001
(12) Qian, L. H.; Chen, M. W. Appl. Phys. Lett. 2007, 91 (8), 083105. doi: http//dx.doi.org/10.1063/1.2773757
(13) Fujita, T.; Guan, P.; Mckenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Nat. Mater. 2012, 11 (9), 775. doi: 10.1038/nmat3391
(14) Qi, Z. M.; Honma, I.; Zhou, H. Anal. Chem. 2006, 78, 1034-1041. doi: 10.1021/ac051380f.
(15) Raether, H. Springer Berlin Heidelberg, 1988, 111 (1): 4-13.
(16) http//www.chemspider.com/Chemical-Structure.2246.html.
(17) Wang, X.; Hao, W; Zhang, H.; Pan, Y.; Kang, Y.; Zhang, X.; Zou, M.; Tong, P.; Du, Y. Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 2015, 139, 215. doi: 10.1016/j.saa.2014.11.104
(18) Zhang, Z.; Lu, D. F.; Qi, Z. M. J. Phys. Chem. C 2012, 116, 3342. doi: 10.1021/jp2102429.
(19) Bao, L.; Sheng, P.; Li, J.; Wu, S.; Cai, Q; Yao, S. Analyst 2012, 137, 4010. doi: 10.1039/C2AN35589B
(20) Fu, S.; Guo, X.; Wang, H.; Yang, T.; Wen, Y. Sens. Actuators B 2015, 212, 200. doi: 10.1016/j.snb.2015.01.134
(21) Feng, A.; Duan, J. M.; Du, J. J.; Jing, C. Y. Environ. Chem. 2014, 1 (33), 47. [冯艾, 段晋明, 杜晶晶, 景传勇. 环境化学, 2014, 1 (33), 47.] doi: 10.7524/j.issn.0254-6108.2014.01.001
(22) Xie, Y. F.; Wang, X.; Ruan, W. D. Song, W.; Zhao, B. Spectrosc. Spect. Anal. 2011, 31 (9), 2320. [谢云飞, 王旭, 阮伟东, 宋薇, 赵冰. 光谱学与光谱分析, 2011, 31 (9), 2320.]

[1] ZHANG Zhe, LU Dan-Feng, QI Zhi-Mei. Surface Plasmon Resonance Sensing Properties of Nanoporous Gold Thin Films[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 867-873.