Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (5): 1065-1070    DOI: 10.3866/PKU.WHXB201703061
ARTICLE     
Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy
Meng-Fang CHANG1,Lei LI1,Xiao-Dan CAO1,Meng-Hui JIA2,Jia-Sheng ZHOU1,Jin-Quan CHEN1,Jian-Hua XU1,*()
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
Download: HTML     PDF(940KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this paper, the fluorescence dynamics of tryptophan residues in LicT protein is investigated by time-resolved fluorescence method combined with UV absorption and steady-state fluorescence spectroscopy. The local microenvironment and structural changes of LicT protein before and after activation are studied. The activated LicT protein AC 141 prevents the antitermination of gene transcription involved in carbohydrate utilization to accelerate the body's metabolism. The structural properties and microenvironment of activated protein AC 141 and wild-type protein Q 22 were determined by different fluorescence emissions and lifetimes of tryptophan residues. The interaction between tryptophan residues and solvent is elucidated by decay associated spectroscopy (DAS) and time-resolved emission spectra (TRES), indicating that upon activation, the structure of AC 141 is more compact than that of wild-type Q 22. In addition, TRES also showed that tryptophan residues in the protein had a continuous spectral relaxation process. Anisotropy results illustrated the conformational motions of residues and whole proteins, suggesting that tryptophan residues had independent local motions in the protein system, and that the motions were more intense in the activated protein.



Key wordsTime-correlated single-photon counting      Tryptophan      Decay-associated spectra      Timeresolved emission spectra      Anisotropy     
Received: 05 January 2017      Published: 06 March 2017
MSC2000:  O643  
Corresponding Authors: Jian-Hua XU     E-mail: jhxu@ecnu.edu.cn
Cite this article:

Meng-Fang CHANG,Lei LI,Xiao-Dan CAO,Meng-Hui JIA,Jia-Sheng ZHOU,Jin-Quan CHEN,Jian-Hua XU. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy. Acta Physico-Chimica Sinca, 2017, 33(5): 1065-1070.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201703061     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I5/1065

Fig 1 Structures of tryptophan and tryptophan residue (a) tryptophan; (b) tryptophan residue
Fig 2 Absorption spectra of LicT proteins
Fig 3 Steady-state fluorescence spectra of LicT proteins
Fig 4 Jablonski diagram of solvent effect and excited state continuous spectral relaxation (CR) is the energy of the exciting photons. 1Lb (a) and 1La are singlet excited states. F and R represent Franck-Condon (unrelaxed) state and relaxed state, respectively. k is fluorescence decay rate. ks is solvent relaxation rate.
Fig 5 Ribbon and space filling presentations of LicT protein Adapted from Fig. 6a of reference18.
Fig 6 DAS (decay associated spectra) of LicT proteins (a) AC 141; (b) Q 22
Fig 7 Time-resolved emission spectra (TRES) of LicT proteins (a) AC 141; (b) Q 22
Sample r0 τ/ns g01/% θ1/ns g02/% θ2/ns
AC 141 0.209 6.12 87.8 65.1 12.2 0.3
Q 22 0.165 6.31 65.7 42.5 34.3 0.7
Table 1 Fitting parameters of anisotropy decays of LicT proteins
Fig 8 Measured decay anisotropies and fitting analyses of LicT proteins
1 Frauenfelder H. ; Sligar S. G. ; Wolynes P. G. Science 1991, 254 (5038), 1598.
2 Xu J. ; Toptygin D. ; Graver K. J. ; Albertini R. A. ; Savtchenko R. S. ; Meadow N. D. ; Roseman S. ; Callis P. R. ; Brand L. ; Knutson J. R. J. Am. Chem. Soc. 2006, 128 (4), 1214.
3 Schimmel, P.; Cantor, C. Biophysical Chemistry: Part Ⅱ; Techniques for the Study of Biological Structure and Function; WH Freeman: New York, 1980; pp 14-178.
4 Lu W. ; Kim J. ; Qiu W. ; Zhong D. Chem. Phys. Lett. 2004, 388 (1-3), 120.
5 Callis P. R. Method Enzymol. 1996, 278, 113.
6 Longworth, J.W. Intrinsic Fluorescence of Proteins. In Time-Resolved Fluorescence Spectroscopy in Biochemistry andBiology; Cundall, R. B., Dale, R. E. Eds.; Springer US: Boston, MA, 1983; pp 651-725.
7 Knutson J. R. ; Walbridge D. G. ; Brand L. Biochemistry 1982, 21 (19), 4671.
8 McMahon L. P. ; Yu H. T. ; Vela M. A. ; Morales G. A. ; Shui L. ; Fronczek F. R. ; McLaughlin M. L. ; Barkley M. D. J. Phys. Chem. B 1997, 101 (16), 3269.
9 Ross J. B. A. ; Wyssbrod H. R. ; Porter R. A. ; Schwartz G. P. ; Michaels C. A. ; Laws W. R. Biochemistry 1992, 31 (6), 1585.
10 Szabo A. G. ; Rayner D. M. J. Am. Chem. Soc. 1980, 102 (2), 554563.
11 Chen Y. ; Barkley M. D. Biochemistry 1998, 37 (28), 9976.
12 Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: New York, 2006; pp 102-605.
13 Vincent M. ; Deveer A. M. ; Haas G. H. ; Verheij H. M. ; Gallay J. Eur. J. Biochem. 1993, 215 (3), 531.
14 Ross J. B. A. ; Schmidt C. J. ; Brand L. Biochemistry 1981, 20 (15), 4369.
15 Deutscher J. ; Francke C. ; Postma P.W. Microbiol. Mol. Biol. R. 2006, 70 (4), 939.
16 Stülke J. ; Arnaud M. ; Rapoport G. ; Martin-Verstraete I. Mol. Microbiol. 1998, 28 (5), 865.
17 van Tilbeurgh H. ; Le Coq D. ; Declerck N. EMBO J. 2001, 20 (14), 3789.
18 Declerck N. ; Dutartre H. ; Receveur V. ; Dubois V. ; Royer C. ; Aymerich S. ; van Tilbeurgh H. J. Mol. Biol. 2001, 314, 671d.
19 Declerck N. ; Vincent F. ; Hoh F. ; Aymerich S. ; van Tilbeurgh H. J. Mol. Biol. 1999, 294 (2), 389.
20 Gooch, J.W. Beer-Bouguer Law (Beer-Lambert Law). InEncyclopedic Dictionary of Polymers, Gooch, J.W. Ed.; Springer New York: New York, 2011; p 72.
21 Zhang L. ; Kao Y. T. ; Qiu W. ; Wang L. ; Zhong D. J. Phys. Chem. B 2006, 110 (37), 18097.
22 Callis P. R. ; Burgess B. K. J. Phys. Chem. B 1997, 101 (46), 9429.
23 Pierce D.W. ; Boxer S. G. Biophys. J. 1995, 68 (4), 1583.
24 Qiu W. ; Li T. ; Zhang L. ; Yang Y. ; Kao Y. T. ; Wang L. ; Zhong D. Chem. Phys. 2008, 350 (1-3), 154.
25 Gryczynski I. ; Wiczk W. ; Johnson M. L. ; Lakowicz J. R. Biophys. Chem. 1988, 32 (2), 173.
26 Chen R. F. ; Knutson J. R. ; Ziffer H. ; Porter D. Biochemistry 1991, 30 (21), 5184.
[1] ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 949-959.
[2] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[3] WANG Jing-Dong, LI Shuang, Lü Rong, YU An-Chi. Fluorescence Quenching of Eosin Y by Tyrosine[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1787-1794.
[4] TANG Rui-Zhi, LI Hai-Xia, LIU Yan-Cheng, ZHANG Peng, CAO Xi-Yan, WANG Wen-Feng. Laser Flash Photolysis Study on Electron Transfer Oxidation Reaction of Tryptophan or Tyrosine with Triplet State Vitamin K3[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 213-216.
[5] PU Peng, XU Can, XIE Shu-Yu. Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2011, 27(09): 2227-2232.
[6] CHENG Xiang-Long;WU Ai-Hua;SHEN Xing-Hai;HE Yong-Ke. The Formation of Cyclodextrin Nanotube Induced by POPOP Molecule[J]. Acta Physico-Chimica Sinca, 2006, 22(12): 1466-1472.
[7] WANG Hai-Long;WANG Xiu-Xi;WANG Yu;LIANG Hai-Yi . Molecular Dynamics Simulations of Low Index Surfaces Melting Behaviors for Metal Cu[J]. Acta Physico-Chimica Sinca, 2006, 22(11): 1367-1371.
[8] LI Hua; XU Cai-ling; ZHAO Guang-yu; LI Hu-lin. Preparation and Magnetic Properties of Amorphous Co-Pt Alloy Nanowire Arrays[J]. Acta Physico-Chimica Sinca, 2005, 21(06): 641-645.
[9] Liu Shou-Xin, Fang Yu, Hu Dao-Dao, Lv Hong-Wang. Complexation between Poly(methacrylic acid) and Cationically Modified Polyacrylamide[J]. Acta Physico-Chimica Sinca, 2000, 16(03): 214-220.
[10] Xu Yong-Sheng,Han Kui,Xu Jian-Hua,Zhou Guang-Peng,Lu Xing-Ze. Studies on Azimuthal Orientation of Hemicyanine Molecules in LB Films[J]. Acta Physico-Chimica Sinca, 1996, 12(09): 836-840.
[11] Han Kui,Xu Yong-Sheng,Ma Shi-Hong,Wang Guo-Yi,Luo Long-Gen,Lu Xing-Ze. Studies on Optical Nonlinear Anisotropy in Hemicyanine LB Multilayers[J]. Acta Physico-Chimica Sinca, 1996, 12(07): 589-593.