Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (5): 1065-1070    DOI: 10.3866/PKU.WHXB201703061
Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy
CHANG Meng-Fang1, LI Lei1, CAO Xiao-Dan1, JIA Meng-Hui2, ZHOU Jia-Sheng1, CHEN Jin-Quan1, XU Jian-Hua1
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China;
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
Download:   PDF(940KB) Export: BibTeX | EndNote (RIS)      


In this paper, the fluorescence dynamics of tryptophan residues in LicT protein is investigated by time-resolved fluorescence method combined with UV absorption and steady-state fluorescence spectroscopy. The local microenvironment and structural changes of LicT protein before and after activation are studied. The activated LicT protein AC 141 prevents the antitermination of gene transcription involved in carbohydrate utilization to accelerate the body's metabolism. The structural properties and microenvironment of activated protein AC 141 and wild-type protein Q 22 were determined by different fluorescence emissions and lifetimes of tryptophan residues. The interaction between tryptophan residues and solvent is elucidated by decay associated spectroscopy (DAS) and time-resolved emission spectra (TRES), indicating that upon activation, the structure of AC 141 is more compact than that of wild-type Q 22. In addition, TRES also showed that tryptophan residues in the protein had a continuous spectral relaxation process. Anisotropy results illustrated the conformational motions of residues and whole proteins, suggesting that tryptophan residues had independent local motions in the protein system, and that the motions were more intense in the activated protein.

Key wordsTime-correlated single-photon counting      Tryptophan      Decay-associated spectra      Timeresolved emission spectra      Anisotropy     
Received: 05 January 2017      Published: 06 March 2017
MSC2000:  O643  
Corresponding Authors: XU Jian-Hua     E-mail:
Cite this article:

CHANG Meng-Fang, LI Lei, CAO Xiao-Dan, JIA Meng-Hui, ZHOU Jia-Sheng, CHEN Jin-Quan, XU Jian-Hua. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy. Acta Phys. -Chim. Sin., 2017, 33(5): 1065-1070.

URL:     OR

(1) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. Science 1991, 254 (5038), 1598. doi: 10.1126/science.1749933
(2) Xu, J.; Toptygin, D.; Graver, K. J.; Albertini, R. A.; Savtchenko, R. S.; Meadow, N. D.; Roseman, S.; Callis, P. R.; Brand, L.; Knutson, J. R. J. Am. Chem. Soc. 2006, 128 (4), 1214.doi: 10.1021/ja055746h
(3) Schimmel, P.; Cantor, C. Biophysical Chemistry: Part Ⅱ;Techniques for the Study of Biological Structure and Function;WH Freeman: New York, 1980; pp 14-178.
(4) Lu, W.; Kim, J.; Qiu, W.; Zhong, D. Chem. Phys. Lett. 2004, 388 (1-3), 120. doi: 10.1016/j.cplett.2004.03.012
(5) Callis, P. R. Method Enzymol. 1996, 278, 113. doi: 10.1016/S0076-6879(97)78009-1
(6) Longworth, J.W. Intrinsic Fluorescence of Proteins. In Time-Resolved Fluorescence Spectroscopy in Biochemistry andBiology; Cundall, R. B., Dale, R. E. Eds.; Springer US: Boston, MA, 1983; pp 651-725.
(7) Knutson, J. R.; Walbridge, D. G.; Brand, L. Biochemistry 1982, 21 (19), 4671. doi: 10.1021/bi00262a024
(8) McMahon, L. P.; Yu, H. T.; Vela, M. A.; Morales, G. A.; Shui, L.; Fronczek, F. R.; McLaughlin, M. L.; Barkley, M. D. J. Phys.Chem. B 1997, 101 (16), 3269. doi: 10.1021/jp963273i
(9) Ross, J. B. A.; Wyssbrod, H. R.; Porter, R. A.; Schwartz, G. P.; Michaels, C. A.; Laws, W. R. Biochemistry 1992, 31 (6), 1585.doi: 10.1021/bi00121a002
(10) Szabo, A. G.; Rayner, D. M. J. Am. Chem. Soc. 1980, 102 (2), 554563. doi: 10.1021/ja00522a020
(11) Chen, Y.; Barkley, M. D. Biochemistry 1998, 37 (28), 9976.doi: 10.1021/bi980274n
(12) Lakowicz, J. R. Principles of Fluorescence Spectroscopy;Springer Science & Business Media: New York, 2006; pp 102-605.
(13) Vincent, M.; Deveer, A. M.; Haas, G. H.; Verheij, H. M.; Gallay, J. Eur. J. Biochem. 1993, 215 (3), 531. doi: 10.1111/j.1432-1033.1993.tb18062.x
(14) Ross, J. B. A.; Schmidt, C. J.; Brand, L. Biochemistry 1981, 20 (15), 4369. doi: 10.1021/bi00518a021
(15) Deutscher, J.; Francke, C.; Postma, P.W. Microbiol. Mol. Biol.R. 2006, 70 (4), 939. doi: 10.1128/MMBR.00024-06
(16) Stülke, J.; Arnaud, M.; Rapoport, G.; Martin-Verstraete, I. Mol.Microbiol. 1998, 28 (5), 865. doi: 10.1046/j.1365-2958.1998.00839.x
(17) van Tilbeurgh, H.; Le Coq, D.; Declerck, N. EMBO J. 2001, 20 (14), 3789. doi: 10.1093/emboj/20.14.3789
(18) Declerck, N.; Dutartre, H.; Receveur, V.; Dubois, V.; Royer, C.; Aymerich, S.; van Tilbeurgh, H. J. Mol. Biol. 2001, 314, 671.doi: 10.1006/jmbi.2001.5185
(19) Declerck, N.; Vincent, F.; Hoh, F.; Aymerich, S.; van Tilbeurgh, H. J. Mol. Biol. 1999, 294 (2), 389. doi: 10.1006/jmbi.1999.3256
(20) Gooch, J.W. Beer-Bouguer Law (Beer-Lambert Law). InEncyclopedic Dictionary of Polymers, Gooch, J.W. Ed.; Springer New York: New York, 2011; p 72.
(21) Zhang, L.; Kao, Y. T.; Qiu, W.; Wang, L.; Zhong, D. J. Phys.Chem. B 2006, 110 (37), 18097. doi: 10.1021/jp063025e
(22) Callis, P. R.; Burgess, B. K. J. Phys. Chem. B 1997, 101 (46), 9429. doi: 10.1021/jp972436f
(23) Pierce, D.W.; Boxer, S. G. Biophys. J. 1995, 68 (4), 1583.doi: 10.1016/S0006-3495(95)80331-0
(24) Qiu, W.; Li, T.; Zhang, L.; Yang, Y.; Kao, Y. T.; Wang, L.; Zhong, D. Chem. Phys. 2008, 350 (1-3), 154. doi: 10.1016/j.chemphys.2008.01.061
(25) Gryczynski, I.; Wiczk, W.; Johnson, M. L.; Lakowicz, J. R.Biophys. Chem. 1988, 32 (2), 173. doi: 10.1016/0301-4622(88)87005-4
(26) Chen, R. F.; Knutson, J. R.; Ziffer, H.; Porter, D. Biochemistry 1991, 30 (21), 5184. doi: 10.1021/bi00235a011

[1] ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[2] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[3] WANG Jing-Dong, LI Shuang, Lü Rong, YU An-Chi. Fluorescence Quenching of Eosin Y by Tyrosine[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1787-1794.
[4] TANG Rui-Zhi, LI Hai-Xia, LIU Yan-Cheng, ZHANG Peng, CAO Xi-Yan, WANG Wen-Feng. Laser Flash Photolysis Study on Electron Transfer Oxidation Reaction of Tryptophan or Tyrosine with Triplet State Vitamin K3[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 213-216.
[5] PU Peng, XU Can, XIE Shu-Yu. Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2227-2232.
[6] CHENG Xiang-Long;WU Ai-Hua;SHEN Xing-Hai;HE Yong-Ke. The Formation of Cyclodextrin Nanotube Induced by POPOP Molecule[J]. Acta Phys. -Chim. Sin., 2006, 22(12): 1466-1472.
[7] WANG Hai-Long;WANG Xiu-Xi;WANG Yu;LIANG Hai-Yi . Molecular Dynamics Simulations of Low Index Surfaces Melting Behaviors for Metal Cu[J]. Acta Phys. -Chim. Sin., 2006, 22(11): 1367-1371.
[8] LI Hua; XU Cai-ling; ZHAO Guang-yu; LI Hu-lin. Preparation and Magnetic Properties of Amorphous Co-Pt Alloy Nanowire Arrays[J]. Acta Phys. -Chim. Sin., 2005, 21(06): 641-645.
[9] Liu Shou-Xin, Fang Yu, Hu Dao-Dao, Lv Hong-Wang. Complexation between Poly(methacrylic acid) and Cationically Modified Polyacrylamide[J]. Acta Phys. -Chim. Sin., 2000, 16(03): 214-220.
[10] Xu Yong-Sheng,Han Kui,Xu Jian-Hua,Zhou Guang-Peng,Lu Xing-Ze. Studies on Azimuthal Orientation of Hemicyanine Molecules in LB Films[J]. Acta Phys. -Chim. Sin., 1996, 12(09): 836-840.
[11] Han Kui,Xu Yong-Sheng,Ma Shi-Hong,Wang Guo-Yi,Luo Long-Gen,Lu Xing-Ze. Studies on Optical Nonlinear Anisotropy in Hemicyanine LB Multilayers[J]. Acta Phys. -Chim. Sin., 1996, 12(07): 589-593.