Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1181-1188    DOI: 10.3866/PKU.WHXB201703151
ARTICLE     
Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple
Feng-Ming ZHAO1,Gang WEN1,Li-Yao KONG2,You-Qun CHU2,*(),Chun-An MA1,*()
1 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
2 State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, P. R. China
Download: HTML     PDF(2565KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Titanium nitride nanowires (TiN NWs) were directly prepared on a Ti foil by a hydrothermal method followed by nitridation in ammonia atmosphere. The composition, microstructure, and electrochemical properties of the TiN NWs were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry(CV), and electrochemical impedance spectroscopy (EIS). The results show that the nanowires have diameters of 20-50 nm and are 5 μm long. The surfaces of the TiN NWs comprise Ti-N, Ti-O, and O-Ti-N chemical states. The electrochemical activity and reversibility for the electrode processes of Ⅴ(Ⅱ)/Ⅴ(Ⅲ) couple on the TiN NWs are significantly improved due to the introduced Ti-N, Ti-O, and O-Ti-N chemical states. The transfer resistance for the cathodic reduction of Ⅴ(Ⅲ) on the TiN NWs is about 20 times and 10 times smaller than on TiO2 NWs and graphite electrodes, respectively. The rate constant of charge transfer on the TiN NWs electrode was determined to be 5.21×10-4 cm·s-1, which is about 5 times larger than the rate constant on graphite electrodes (9.63×10-5 cm·s-1).



Key wordsVanadium battery      Titanium nitride nanowire      Ⅴ(Ⅱ)/Ⅴ(Ⅲ)      Electrode process     
Received: 27 December 2016      Published: 15 March 2017
MSC2000:  O646  
Fund:  Natural Science Foundation of Zhejiang Province, China(LY17B050006)
Corresponding Authors: You-Qun CHU,Chun-An MA     E-mail: chuyq@zjut.edu.cn;science@zjut.edu.cn
Cite this article:

Feng-Ming ZHAO,Gang WEN,Li-Yao KONG,You-Qun CHU,Chun-An MA. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple. Acta Physico-Chimica Sinca, 2017, 33(6): 1181-1188.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201703151     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1181

Fig 1 SEM morphology of TiO2 NWs (a) and TiN NWs (b) Insets in (a, b) show the corresponding high-magnification images.
Fig 2 TEM (a) and HRTEM (b) images of TiN NWs
Fig 3 XRD pattern (a) and EDX spectrum (b) of TiN NWs
(hkl)2θ/(°)Δ(2θ)/(°)
standard TIN*TiN NWs
(111)36.80636.827↑0.021
(200)42.61242.747↑0.135
(220)61.98262.095↑0.113
(311)74.20074.283↑0.083
(222)78.07778.349↑0.272
Table 1 Diffraction peak (2θ) shifts between TiN NWs and standard TiN
Fig 4 High-resolution XPS spectra of Ti 2p (a), N 1s (b) and O 1s (c) for TiN NWs
Fig 5 CV curves of (a) TiO2 NWs, (b) TiN NWs and (c) graphite electrodes In (a), (b) and (c), black dash line (---): 3.0 mol×L-1 H2SO4; red solid line (—): adding 1.5 mol×L-1 Ⅴ(Ⅲ) in 3.0 mol×L-1 H2SO4; scan rate: 50 mV×s-1. color online
Fig 6 EIS of TiO2 NWs (▼), TiN NWs (◆) and graphite (●) electrodes Inset is the equivalent circuit, amplitude of 5 mV from 10-2-105 Hz with bias voltage of -0.6 V
SampleRs /?Rct/?Rw/?
TiO2 NWs0.789.56/
TiN NWs0.520.466.71
Graphite0.734.9010.90
Table 2 Parameters obtained from the fitting curves of EIS in figure 6
Fig 7 CV curves of graphite (a) and TiN NWs (b) with different scan rates conditions: 1.5 mol×L-1 Ⅴ(Ⅲ) and 3.0 mol×L-1 H2SO4 at 25 ℃
Fig 8 Relation of lnIp and (Ep-E0) at graphite (a) and TiN NWs (b) electrodes
1 Poullikkas A. Renew. Sust. Energ. Rev. 2013, 27, 778.
2 Alotto P. ; Guarnieri M. ; Moro F. Renew. Sust. Energ. Rev. 2014, 29, 325.
3 Kear G. ; Shah A. A. ; Walsh F. C. Int. J. Energ. Res. 2012, 36, 1105.
4 Li W. Y. ; Liu J. G. ; Yan C. W. Electrochim. Acta 2012, 79, 102.
5 He Z. X. ; Dai L. ; Liu S. Q. ; Wang L. ; Li C. C. Electrochim. Acta 2015, 176, 1434.
6 Li W. Y. ; Zhang Z. Y. ; Tang Y. B. ; Bian H. D. ; Ng T. W. ; Zhang W. J. ; Lee C. S. Adv. Sci. 2016, 3, 1500276.
7 Park M. J. ; Jeon I. Y. ; Ryu J. C. ; Jang H. S. ; Back J. B. Nano Energ. 2016, 26, 233.
8 Tsai H. M. ; Yang S. J. ; Ma C. C. M. ; Xie X. F. Electrochim. Acta 2012, 77, 232.
9 Wang W. H. ; Wang X. D. Electrochim. Acta 2007, 52, 6755.
10 Suare D. J. ; Gonzalez Z. ; Blanco C. ; Granda M. ; Menendez R. ; Santamaria R. ChemSusChem 2014, 7, 914.
11 Li B. ; Gu M. ; Nie Z. M. ; Shao Y. Y. ; Luo Q. T. ; Wei X. L. ; Li X. L. ; Xiao J ; Wang C.M. ; Sprenkle V. ; Wang W. Nano Lett. 2013, 13, 1330.
12 He Z. X. ; Liu J. L. ; He Z. ; Liu S. Q. Chin. J. Inorg. Mater. 2015, 30 (7), 779.
12 何章兴; 刘剑蕾; 何震; 刘素琴. 无机材料学报, 2015, 30 (7), 779.
13 Su A. Q. ; Wang N. F. ; Liu S. Q. ; Wu T. ; Peng S Acta Phys. -Chim. Sin. 2012, 28 (6), 1387.
13 苏安群; 汪南方; 刘素琴; 吴涛; 彭穗. 物理化学学报, 2012, 28 (6), 1387.
14 Gao C. ; Wang N. F. ; Peng S. ; Liu S. Q. ; Lei Y. ; Liang X. X. ; Zeng S. S. ; Zi H. F. Electrochim. Acta 2013, 88, 193.
15 Men Y. ; Sun T. Int. J. Electrochem. Sci. 2012, 7, 3482.
16 Kaskel S. ; Schlichte K. ; Kratzke T. J. Mol. Catal. A-Chem. 2004, 208, 291.
17 Lemme M. C. ; Efavi J. K. ; Mollenhauer T. ; Schmidt M. ; Gottlob H. D. B. ; Wahlbrink T. ; Kurz H. Microelectron. Eng. 2006, 83, 1551.
18 Ponon N. K. ; Appleby D. J. R. ; Arac E. ; King P. J. ; Ganti S. ; Kwa K. S. K. ; O'Neill A. Thin Solid Films 2015, 578, 31.
19 Zheng H. ; Fang S. ; Tong Z. K. ; Pang G. ; Shen L. F. ; Li H. S. ; Yang L. ; Zhang X. G. J. Mater. Chem. A 2015, 3, 12476.
20 Kakinuma K. ; Wakasugi Y. ; Uchida M. ; Kamino T. ; Uchida H. ; Deki S. ; Watanabe M. Electrochim. Acta 2012, 77, 279.
21 Xie Y. B. ; Fang X. Q. Electrochim. Acta 2014, 120, 273.
22 Wang G. Q. ; Liu S.M. Mater. Lett. 2015, 161, 294.
23 Yang C. M. ; Wang H. N. ; Lu S. F. ; Wu C. X. ; Liu Y. Y. ; Tan Q. L. ; Liang D. W. ; Xiang Y. Electrochim. Acta 2015, 182, 834.
24 Wei L. ; Zhao T. S. ; Zeng L. ; Zeng Y. K. ; Jiang H. R. J. Power Sources 2017, 341, 318.
25 Mosavati N. ; Chitturi V. R. ; Salley S. O. ; Ng K. Y. S. J. Power Sources 2016, 321, 87.
26 H Y. J. ; Yue X. ; Jin Y. S. ; Huang X. D. ; Shen P. K. J. Mater Chem. A 2016, 4, 3673.
27 Liu M. Y. ; Ma Y. L. ; Su L. ; Chou K. C. ; Hou X. M. Analyst 2016, 141, 1693.
28 Ohnishi R. ; Katayama M. ; Cha D. K. ; Takanabe K. ; Kubota J. ; Domen K. J. Electrochem. Soc 2013, 160 (6), F501.
29 Thotiyl M. M. O. ; Kumar T. R. ; Sampath S. J. Phys. Chem. C 2010, 114, 17934.
30 Chan M. H. ; Lu F. H. Thin Solid Films 2009, 517, 5006.
31 Liu H. J. ; Yang L. X. ; Xu Q. ; Yan C. W. RSC Adv 2014, 4, 55666.
[1] WEN Yue-Hua;ZHANG Hua-Min;QIAN Peng;ZHAO Ping;ZHOU Han-Tao;YI Bao-Lian. Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery[J]. Acta Physico-Chimica Sinca, 2006, 22(04): 403-408.
[2] Zhang Ping-Ping; Zhang Wu-Chang; Zhang Ting-Fang; Zhou Wen-Juan; Wang Zhi-Qin. The Electrode Kinetics of Cathodic Reduction of Pd(II)-Complex and Zinc Chloride in DMF[J]. Acta Physico-Chimica Sinca, 1992, 8(05): 668-672.