Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1108-1113    DOI: 10.3866/PKU.WHXB201703222
Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders
WU Guang-Xin1,2,3,, PENG Wang-Jun1,2,3, ZHANG Jie-Yu1,2,3
1 State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200072, P. R. China;
2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, P. R. China;
3 Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
Download:   PDF(1374KB) Export: BibTeX | EndNote (RIS)      


Based on zero-order Bragg-Williams approximation, a new statistic thermodynamic model is presented herein. The distinctive feature of the new model is that an apparent compressibility factor α is introduced to correct the volume change of high-pressure gases and ensure no loop-like curves are obtained in the fitting results. The new model is successfully applied to investigate hydrogen absorption on metal powders. Our results indicate that the model works very well and can be used to predict PCT curves at different temperatures. Hence, our new model exhibits significant potential for application in practical systems.

Key wordsStatistic thermodynamic theory      Hydriding process      Hydrogen storage materials powder     
Received: 09 December 2016      Published: 22 March 2017
MSC2000:  O642  

The project was supported by the National Natural Science Foundation of China (51104098, 51674163) and Science and Technology Committee of Shanghai, China (14521100603, 16ZR1412000).

Corresponding Authors: WU Guang-Xin     E-mail:
Cite this article:

WU Guang-Xin, PENG Wang-Jun, ZHANG Jie-Yu. Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders. Acta Phys. -Chim. Sin., 2017, 33(6): 1108-1113.

URL:     OR

(1) Lacher, J. R. A Theoretical Formula for the Solubility of Hydrogen in Palladium. In Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1937; p 525.
(2) Beeri, O.; Cohen, D.; Gavra, Z.; Johnson, J. R.; Mintz, M. H. J. Alloy. Compd. 1998, 267, 113. doi: 10.1016/S0925-8388(97)00521-5
(3) Beeri, O.; Cohen, D.; Gavra, Z.; Mintz, M. H. J. Alloy. Compd. 2003, 352, 111. doi: 10.1016/S0925-8388(02)01155-6
(4) Lexcellent, C.; Gondor, G. Intermetallics.2007, 15, 934. doi: 10.1016/j.intermet.2006.11.002
(5) Fang, S.; Zhou, Z.; Zhang, J.; Yao, M.; Feng, F.; Northwood, D. O. J. Alloy. Compd. 1999, 293-295, 10. doi: 10.1016/S0925-8388(99)00380-1
(6) Fang, S.; Zhou, Z.; Zhang, J.; Yao, M.; Feng, F.; Northwood, D. O. Int. J. Hydrog. Energy 2000, 25, 143. doi: 10.1016/S0360-3199(99)00032-4
(7) Zhou, Z.Q.; Fang, S.S.; Feng, F. Trans. Nonferrous Met. Soc. China 2003, 13, 864.
(8) Lototsky, M.; Yartys, V.; Marinin, V.; Lototsky, N. J. Alloy. Compd. 2003, 356, 27. doi: 10.1016/S0925-8388(03)00095-1
(9) Lototskyy, M.; Yartys, V.; Pollet, B.; Bowman, R. Int. J. Hydrog. Energy 2014, 39, 5818. doi:10.1016/j.ijhydene.2014.01.158
(10) Davidson, D.; Raman, S. S.; Lototsky, M.; Srivastava, O. Int. J. Hydrog. Energy 2003, 28, 1425. doi: 10.1016/S0360-3199(02)00194-5
(11) Lototskyy, M.; Klochko, Y.; Linkov, V.; Lawrie, P.; Pollet, B. Energy Procedia 2012, 29, 347. doi: 10.1016/j.egypro.2012.09.041
(12) Jewell, L.L.; Davis, B. H. Appl. Catal. A-Gen. 2006, 310, 1. doi: 10.1016/j.apcata.2006.05.012
(13) Wagner, C. Acta Metall. 1971, 19, 843. doi: 10.1016/0001-6160(71)90140-4
(14) Kuji, T.; Oates, W.; Bowerman, B.; Flanagan, T. J. Phys. F: Metal. Phys. 1983, 13, 1785. doi: 0305-4608/13/9/007
(15) Chabane, D.; Harel, F.; Djerdir, A.; Candusso, D.; Elkedim, O.; Fenineche, N. Int. J. Hydrog. Energy 2016, 41, 11682. doi: 10.1016/j.ijhydene.2015.12.048
(16) Oates, W.; Flanagan, T.B. J. Mater. Sci. 1981, 16, 3235. doi: 10.1007/BF00586283
(17) Young, K.; Ouchi, T.; Fetcenko, M. J. Alloy. Compd. 2009, 480, 440. doi: 10.1016/j.jallcom.2009.03.194
(18) Payá, J.; Linder, M.; Laurien, E.; Corberán, J. J. Alloy. Compd. 2009, 484, 190. doi: 10.1016/j.jallcom.2009.05.069
(19) Hill, T. L. An Introduction to Statistical Thermodynamics; Dover Publications: New York, 1986.
(20) Fowler, R. H.; Guggenheim, E. A. Statistical Thermodynamics of Super-Lattices, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1940; Vol. 174, 189.
(21) Tanaka, T.; Keita, M.; Azofeifa, D. E. Phys. Rev. B 1981, 24, 1771. doi: 10.1103/PhysRevB.24.1771
(22) Bragg, W. L.; Williams, E. J. The Effect of Thermal Agitation on Atomic Arrangement in Alloys, In Proceedings of the Royal Society of London. Series A, 1934; p 699.
(23) Fukai, Y. The Metal-Hydrogen System; Springer-Verlag: Berlin, Heidelberg, 1993.
(24) Lototskyy, M. Int. J. Hydrog. Energy 2016, 41, 2739. doi: 10.1016/j.ijhydene.2015.12.055
(25) Saita, I.; Toshima, T.; Tanda, S.; Akiyama, T. J. Alloy. Compd. 2007, 446-447, 80. doi: 10.1016/j.jallcom.2007.04.020
(26) Zeng, K.; Klassen, T.; Oelerich, W.; Bormann, R. Int. J. Hydrog. Energy 1999, 24, 989. doi: 10.1016/S0360-3199(98)00132-3
(27) Li, Q.; Chou, K. C.; Xu, K. D.; Lu, X. G.; Zhang, J. Y.; Lin, Q.; Jiang, L. J. J. Mater. Sci. Eng: A 2007, 457, 1. doi: 10.1016/j.msea.2007.01.120

[1] GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 194-200.
[3] CUI Peng, LIU Hai, YU Xue-Min, XIA Qing, LI Qing-Song. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 65-72.
[4] YUAN Lian, LIU Yu-Jiao, HE Huan, JIANG Feng-Lei, LI Hui-Rong, LIU Yi. Microcalorimetric Analysis of Isolated Rat Liver Mitochondrial Metabolism under Different Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 73-80.
[5] YAN Ren, LAI Lu, XU Zi-Qiang, JIANG Feng-Lei, LIU Yi. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.
[6] LIU Wei-Yan, LI Ya-Dong, LIU Tian, GAN Lin. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2106-2112.
[7] CHEN He-Long, WEI Chang-Fu, TIAN Hui-Hui, WEI Hou-Zhen. NMR Relaxation Response of CO2 Hydrate Formation and Dissociation in Sand[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1599-1604.
[8] LI Xu, LI Qiang-Guo, JIANG Jian-Hong, GU Hui-Wen, LI Chuan-Hua, XIAO Sheng-Xiong, LI Xia. Design and Application of a Precise Isoperibol Combus-tion-Solution-Reaction Microcalorimeter[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1114-1122.
[9] BAI Guang-Yue, LIU Jun-Ling, WANG Jiu-Xia, WANG Yu-Jie, LI Yan-Na, ZHAO Yang, YAO Mei-Huan. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 976-983.
[10] ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[11] ZHENG Qi-Ge, LIU Hui, XIA Quan, LIU Qing-Shan, MOU Lin. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[12] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.
[13] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[14] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[15] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.