Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1149-1159    DOI: 10.3866/PKU.WHXB201703291
ARTICLE     
B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction
Yu HE1,2,Yi-Bo WANG1,2,*()
1 Key Laboratory of High Performance Computational Chemistry, Guiyang 550025, P. R. China
2 Network and Information Center of Guizhou University, Guiyang 550025, P. R. China
Download: HTML     PDF(5073KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A novel DFT-D method, B972-PFD, has been found by combining the B972 hybrid density functional with the empirical dispersion correction based on the spherical atom model (SAM). The performance of the B972-PFD method is assessed on the S66, S66x8, and S22 standard data sets, atmospheric hydrogen-bonded clusters, the Adenine-Thymine ππ stacked, Watson-Crick hydrogen-bonded complexes, and the methane to (H2O)20 water cluster. The benchmark results of the S66 test set show that B972-PFD and three recently developed density functionals, ωB97X-V, B97M-V, and ωB97M-V developed by the Head-Gordon group, are at the same level of accuracy, and have an root-mean-square deviation (RMSD) of binding energies less than 1 kJ·mol-1 relative to the CCSD(T)/CBS gold standard. The B972-PFD method also showed excellent accuracy in other data set tests. The basis set effect of the B972-PFD method has been benchmarked, and we recommend that the favorable price/performance ratios basis set is Pople's 6-311++G(2d, p).



Key wordsIntermolecular Interaction      DFT-D      Spherical atom model for dispersion correction      B972-PFD     
Received: 10 January 2017      Published: 29 March 2017
MSC2000:  O641  
Fund:  The project was supported by the National Natural Science Foundation of China(41165007);Natural Science Foundation of Guizhou Province, China(20082116)
Corresponding Authors: Yi-Bo WANG     E-mail: ybw@gzu.edu.cn
Cite this article:

Yu HE,Yi-Bo WANG. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction. Acta Physico-Chimica Sinca, 2017, 33(6): 1149-1159.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201703291     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1149

Fig 1 Comparison of calculation precision for different DFT methods on the S66 test set DFT: density functional theory
Method
with PFD
MD/
(kJ?mol?1)
MAD/
(kJ?mol?1)
RMSD/
(kJ?mol?1)
MAX/
(kJ?mol?1)
Method
without PFD
MD/
(kJ?mol?1)
MAD/
(kJ?mol?1)
RMSD/
(kJ?mol?1)
MAX/
(kJ?mol?1)
B972-PFD0.290.710.962.97B97214.6214.6216.6939.78
B3LYP-PFD?0.631.261.766.44B3LYP13.7113.7116.1738.11
TPSS-PFD?1.431.521.946.85TPSS12.9012.9015.2637.86
B973-PFD?1.261.512.056.9B97313.0513.0514.7334.92
B3PW91-PFD1.511.842.224.69B3PW9115.8215.8218.1141.66
APF-PFD?2.802.803.269.25APF11.5311.5613.7833.42
X3LYP-PFD?3.133.193.709.77X3LYP11.2011.2213.6933.22
BLYP-PFD3.313.393.856.69BLYP17.6417.6420.1346.68
B97-PFD?4.564.564.8511.3B979.789.8511.9030.53
PBE-PFD?5.235.235.5611.51PBE9.099.2611.4430.32
B97-K-PFD?4.444.525.8219.66B97-K9.879.9210.9822.17
PBE0-PFD?5.825.826.2314.18PBE08.528.6910.8327.65
B971-PFD?6.286.286.6914.9B9718.038.2010.0726.94
ωB97X-PFD?13.9713.9715.1533.51ωB97X0.332.092.798.32
ωB97-PFD?15.2315.2316.6537.99ωB97?0.891.582.168.89
Table 1 Calculated errors of DFT-PFD/6-311++G(2d, p) and DFT/6-311++G(2d, p) methods with respect to the benchmark CCSD(T)/CBS calculations on the S66 data set
Fig 2 Calculated errors of DFT-PFD/6-311++G(2d, p) methods with respect to the benchmark CCSD(T)/CBS calculations on the S66 data set
Fig 3 Calculated errors of B97's DFT-PFD/6-311++G(2d, p) methods with respect to the benchmark CCSD(T)/CBS calculations on the S66 data set
Basis setMDMADRMSDMAX
6-311G(2d, p)0.461.051.303.18
6-311++G(2d, p)0.290.710.962.97
6-311++G(2df, 2p)0.440.750.993.08
6-311++G(3df, 3pd)0.460.791.083.75
cc-pVDZ0.961.261.634.44
aug-cc-pVDZ0.500.791.053.14
cc-pVTZ0.590.921.264.18
aug-cc-pVTZ0.460.841.133.89
cc-pVQZ0.450.841.164.42
aug-cc-pVQZ0.390.801.124.30
def2-TZVP0.380.791.053.18
def2-TZVPP0.460.791.134.18
def2-QZVPP0.400.791.124.30
Table 2 Calculated errors (in kJ?mol?1) of B972-PFD methods for different basis sets based on S66 data set
MethodBasis setMDMADRMSDMAX
B972-PFD6-311++G(2d, p)0.290.710.962.97
APF-PFD*6-311++G(2d, p)?0.791.211.767.32
ωB97X-D6-311++G(3df, 3pd)?1.261.381.886.44
ωB97X-D36-311++G(3df, 3pd)?0.961.011.244.03
B3LYP-D3(BJ)def2-QZVP?0.920.961.515.77
ωB97X-Vaug-cc-pVDZ0.180.340.471.80
ωB97X-Vaug-cc-pVTZ0.130.410.572.69
B97M-Vaug-cc-pVDZ0.650.780.931.97
B97M-Vaug-cc-pVTZ0.390.630.771.96
ωB97M-Vaug-cc-pVDZ?0.300.500.752.08
ωB97M-Vaug-cc-pVTZ?0.070.370.532.19
XYG36-311+G(3df, 2p)0.141.301.614.49
XYGJ-OS6-311+G(3df, 2p)0.461.461.794.73
ωB97X-2cc-pV(T/Q)Z1.181.341.775.71
PBE0-26-311++G(3df, 3pd)2.772.793.408.09
Table 3 Calculated errors (in kJ?mol?1) of B972-PFD and other DFT-D methods with respect to the benchmark CCSD(T)/CBS calculations on the S66 data set
Fig 4 Comparison of calculated precision of B972-PFD and other DFT-D method based on S66 data set
MethodBasis setMDMADRMSDMAXRef.
XYG36-311+G(3df, 2p)?0.460.791.052.517
ωB97X-D36-311++G(3df, 3pd)?0.330.751.053.4345
ωB97X-D6-311++G(3df, 3pd)?0.590.791.052.4345
B972-PFD6-311++G(2d, p)0.421.051.342.68this work
B972-PFD6-311++G(2df, 2p)0.541.051.302.43this work
B972-PFD6-311++G(3df, 3pd)0.521.071.353.10this work
APF-PFD*6-311++G(2d, p)?1.091.341.976.53this work
APF-PFD6-311++G(2d, p)?3.413.414.261.55this work
B3LYP-D3(BJ)def2-QZVP?1.131.171.805.02this work
ωB97X-Vaug-cc-pVDZ0.750.891.253.06this work
ωB97X-Vaug-cc-pVTZ0.690.961.272.79this work
B97M-Vaug-cc-pVDZ1.391.391.794.08this work
B97M-Vaug-cc-pVTZ0.991.041.363.23this work
ωB97M-Vaug-cc-pVDZ?0.131.041.453.25this work
ωB97M-Vaug-cc-pVTZ0.230.861.183.05this work
Table 4 Calculated errors (in kJ?mol?1) of B972-PFD and other DFT methods with respect to the benchmark CCSD(T)/CBS calculations on the S22 data set
Method/ComplexRef.37B972-PFD
BS1
B972-PFD
BS2
XYG3
BS3
M062X
BS3
ωB97X-D
BS3
ωB97X-V
BS3
B97M-V
BS3
ωB97M-V-V
BS3
(H2SO4)(H2O)?58.032.182.470.87?2.760.130.491.070.14
(H2SO4)(NH3)?84.77?0.59?0.590.78?2.59?0.75?0.022.761.50
(H2SO4)(CH3NH2)?396.770.59?0.210.20?1.975.27?4.1810.893.34
(H2SO4)((CH3)2NH)?459.110.29?0.211.08?1.345.56?7.0715.932.07
(H2SO4)((CH3)3N)?367.271.171.091.740.004.35?1.4317.726.01
(H2SO4)(H2N(CH3)2NH2)?388.02?2.38?2.721.06?4.272.22?3.749.412.83
(H2SO4)(HCOOH)?90.960.67?0.841.49?2.09?1.00?1.181.78?0.72
(H2SO4)(CH3COOH)?97.110.13?1.421.61?1.92?1.13?1.271.44?0.81
(H2SO4)(HCO3H)?80.292.431.092.10?2.51?0.29?0.461.25?0.91
(H2SO4)(CH3CO3H)?86.941.670.332.40?2.30?0.50?0.590.93?1.07
(H2SO4)2?88.743.140.252.17?1.21?1.46?0.502.82?0.76
MD0.84?0.071.41?2.091.13?1.816.001.06
MAD1.381.021.412.092.061.906.001.83
MAX3.142.722.404.275.567.0717.726.01
RMSD1.691.321.552.322.832.828.532.44
Table 5 Calculated errors (in kJ?mol?1) of B972-PFD and other DFT methods with respect to the basis set convergence of the CCSD(T) interaction energies of atmospheric strongly hydrogen-bonded complexes
Intermolecular distanceMDMADRMSDMAX
0.901.722.092.647.03
0.950.841.131.464.48
1.000.290.670.922.93
1.05?0.080.630.843.14
1.10?0.330.710.923.64
1.25?0.840.921.094.06
1.50?0.880.880.963.01
2.00?0.330.330.420.92
Table 6 Calculated errors (in kJ?mol?1) of B972-PFD/6-311++G(2d, p) with respect to the benchmark CCSD(T)/CBS calculations on the S66x8 data set
MethodMD allRMSD allRMSD H-bondsRMSD π stacksRMSD LondonRMSD mixed
B972-PFDa0.041.130.921.671.001.05
M06b?3.224.063.476.233.393.64
M06-2Xb1.211.881.592.302.381.59
M06Lb2.893.353.314.142.473.60
B97Db?0.542.132.851.722.261.00
PBE0-D3(BJ)b0.501.461.921.631.050.88
TPSS0-D3(BJ)b0.041.261.511.171.340.84
B3LYP-D3(BJ)b0.210.841.170.790.540.17
B3PW91-D3(BJ)b?0.171.301.461.840.920.84
PW6B95-D3(BJ)b?0.421.421.881.461.050.96
CAM-B3LYP-D3(BJ)b?0.311.792.382.311.050.85
ωB97X-D3b?0.331.340.671.422.380.71
LC-wPBE-D3(BJ)b0.131.051.261.090.790.88
TPSS-D3(BJ)b?0.251.421.211.921.761.09
PBE-D3(BJ)b0.381.511.632.301.340.88
BP86-D3(BJ)b0.962.432.014.482.011.55
BLYP-D3(BJ)b?0.460.961.091.050.710.96
B97D3b0.001.551.971.721.341.00
ωB97X-Vb?0.330.960.841.550.750.79
Table 7 Calculated errors (in kJ?mol?1) of B972-PFD and other DFT-D methods with respect to the benchmark CCSD(T)/CBS calculations on the S66x8 data set
Fig 5 Dissociation energy curves of the Adenine-Thymine complex in the π-π stacked and Watson-Crick conformations using CCSD(T) and B972-PFD methods
MethodBinding energyRef.
QMC?22.15 ± 2.0947
B972-PFD/6-311++G(2d, p)?19.56this work
B972-PFD/aug-cc-pVTZ?20.48this work
B972-PFD/aug-cc-pVQZ?20.61this work
APF-PFD/6-311++G(2d, p)?24.91this work
APF-PFD/aug-cc-pVTZ?25.83this work
APF-PFD*/6-311++G(2d, p)?19.60this work
APF-PFD*/aug-cc-pVTZ?20.52this work
MP2/CBS?21.0748
MP2C-F12/aug-cc-pVTZ?19.2347
att-MP2/aug-cc-pVTZ?16.7648
ωB97X-V/aug-cc-pVTZ?26.2948
B97M-V/aug-cc-pVTZ?21.23this work
ωB97M-V/aug-cc-pVTZ?22.95this work
ωB97X-D/ aug-cc-pVTZ?26.7148
ωB97X-D3/6-311++G(3df, 3pd)?29.37this work
LC-VV10/aug-cc-pVTZ?4.8948
XYG3/aug-cc-pVTZ(UCP)?18.62this work
XYGJ-OS/aug-cc-pVTZ(UCP)?20.03this work
B3LYP-D3(BJ)/aug-cc-pVTZ?27.92this work
B2PLYP/aug-cc-pVTZ?4.5648
B2PLYP-D3(zero)/ aug-cc-pVTZ?25.2548
M06-2X/aug-cc-pVTZ?25.5448
M06-2X-D3(zero)/ aug-cc-pVTZ?30.6048
DFT-SAPT/aug-cc-pVTZ?16.2247
XSAPT(KS)+D3/hpTZVPP?14.5548
Table 8 Binding energy (in kJ?mol?1) of CH4 to (H2O)20
1 Rezac J. ; Riley K. E. ; Hobza P. J. Chem. Theory Comput. 2011, 7, 2427.
2 Yu H. S. ; He X. ; Li S. L. ; Truhlar D. G. Chem. Sci. 2016, 7, 5032.
3 Mardirossian N. ; Head-Gordon M. J. Chem. Theory Comput. 2016, 12, 4303.
4 Schwabe T. ; Grimme S. Phys. Chem. Chem. Phys. 2007, 9, 3397.
5 Chai J. D. ; Mao S. P. Chem. Phys. Lett. 2012, 538, 121.
6 Chai J. D. ; Head-Gordon M. J. Chem. Phys. 2009, 131, 174105.
7 Zhang Y. ; Xu X. ; Goddard W. A. Ⅲ. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4963.
8 Zhang I. Y. ; Xu X. ; Jung Y. ; Goddard W. A. Ⅲ. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 19896.
9 Grimme S. ; Hansen A. ; Brandenburg J. G. Bannwarth, C. Chem. Rev. 2016, 116 (SI), 5105.
10 Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys. 2010, 132, 154104.
11 Vydrov O. A. ; Van Voorhis T. J. Chem. Phys. 2010, 133, 244103.
12 Mardirossian N. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2014, 16, 9904.
13 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2015, 142, 074111.
14 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2016, 144, 214110.
15 Austin A. ; Petersson G. A. ; Frisch M. J. ; Dobek F. J. ; Scalmani G. ; Throssell K. J. Chem. Theory Comput. 2012, 8, 4989.
16 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2009.
17 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 16, Rev.A.03; Gaussian Inc.: Wallingford CT, 2016.
18 He Y. ; Wang Y. B. Acta Phys. -Chim. Sin. 2016, 32, 2709.
18 何禹; 王一波. 物理化学学报, 2016, 32, 2709d.
19 Wilson P. J. ; Bradley T. J. ; Tozer D. J. J. Chem. Phys. 2001, 115, 9233.
20 Becke A. D. J. Chem. Phys. 1993, 98, 5648.
21 Becke A. D. Phys. Rev. A 1988, 38, 3098.
22 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
23 Adamo C. ; Barone V. J. Chem. Phys. 1999, 110, 6158.
24 Becke A. D. J. Chem. Phys. 1996, 104, 1040.
25 Tao J. M. ; Perdew J. P. ; Staroverov V. N. ; Scuseria G. E. Phys. Rev. Lett. 2003, 91, 146401.
26 Chai J. D. ; Head-Gordon M. J. Chem. Phys. 2008, 128, 084106.
27 Becke A. D. J. Chem. Phys. 1997, 8554
28 Hamprecht F. A. ; Cohen A. ; Tozer D. J. ; Handy N. C. J. Chem. Phys. 1998, 109, 6264.
29 Thomas W. K. ; David J. T. J. Chem. Phys. 2005, 123, 121103.
30 Boese A. D. ; Martin J. M. J. Chem. Phys. 2004, 121, 3405.
31 Xu X. ; Goddard W. A. Ⅲ. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2673.
32 Dunning T. H. J. Chem. Phys. 1989, 90, 1007.
33 Kendall R. A. ; Dunning T. H. ; Harrison R. J. J. Chem. Phys. 1992, 96, 6796.
34 Woon D. E. ; Dunning T. H. J. Chem. Phys. 1993, 98, 1358.
35 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
36 Jurecak P. ; Sponer J. ; Cemy J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985.
37 Elm J. ; Kristensen K. Phys. Chem. Chem. Phys. 2017, 19, 1122.
38 Rezac J. ; Riley K. E. ; Hobza P. J. Chem. Theory Comput. 2011, 7, 3466.
39 Shao Y. ; Gan Z. ; Epifanovsky E. ; Gilbert A. T. ; Gill P. M. ; Head-Gordon M. Mol. Phys. 2015, 113, 184.
40 Wang Y. B. ; Lin Z. J. Am. Chem. Soc. 2003, 125, 6072.
41 Wang W. Z. ; Sun T. ; Zhang Y. ; Wang Y. B. J. Chem. Phys. 2015, 143, 4145.
42 Sun T. ; Wang Y. B. Acta Phys. -Chim. Sin. 2011, 27, 2553.
42 孙涛; 王一波. 物理化学学报, 2011, 27, 2553d.
43 Li M. M. ; Wang Y. B. ; Zhang Y. ; Wang W. Z. J. Phys. Chem. A 2016, 120, 5766.
44 Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
45 Lin Y. S. ; Li G. D. ; Mao S. P. ; Chai J. D. J. Chem. Theory Comput. 2013, 9, 263.
46 Brauer B. ; Kesharwani M. K. ; Kozuch S. ; Martin J. M. Phys. Chem. Chem. Phys. 2016, 18, 20905.
47 Deible M. J. ; Tuguldur O. ; Jordan K. D. J. Phys. Chem. B 2014, 118, 8257.
48 Lao K. U. ; Herbert J. M. J. Phys. Chem. A 2015, 119, 235.
[1] WANG Yue-Hong, LI Xiao-Yan, ZENG Yan-Li, MENG Ling-Peng, ZHANG Xue-Ying. Topological Analyses of Electron Density on π-hole Pnicogen Bonds in PO2X…PX3/PH2X (X = F, Cl, Br, CH3, NH2) Complexes[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 671-682.
[2] HE Yu, WANG Yi-Bo. An Improvement of the SAM Dispersion Correction in the APF-D Density Functional Method for Studying Intermolecular Interactions[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2709-2716.
[3] WANG Ying, YI Hai-Bo, LI Hui-Ji, DAI Qian, CAO Zhi-Wei, LU Yang. Effects of Interactions between Ions and Alanine Polar Groups on Alanine Associations in Saline Solution: Density Functional Theory and Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1035-1044.
[4] TAO Sha, YU Li-Juan, WU De-Yin, TIAN Zhong-Qun. Raman Spectra of Amino Wagging Vibrational Modes in p-π-Conjugated Molecules[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1609-1617.
[5] LOU Peng-Xiao, WANG Yu-Jie, BAI Guang-Yue, FAN Chao-Ying, Wang Yi-Lin. Direct Evidence for the Energy of Weak Interactions between Surfactant Molecules Using High Sensitivity Isothermal Titration Calorimetry[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1401-1407.
[6] SUN Tao, WANG Yi-Bo. Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods[J]. Acta Physico-Chimica Sinca, 2011, 27(11): 2553-2558.
[7] ZHU Lin-Hong, SONG Le-Xin, CHEN Jie, YANG Jing, WANG Mang. Formation, Structure and Thermal Degradation of the Supramolecular Complex between β-Cyclodextrin and 18-Crown-6[J]. Acta Physico-Chimica Sinca, 2011, 27(07): 1579-1586.
[8] CHEN Dai-Wu; XIE Qing-Ji; JIANG Xue-Qin; YAO Shou-Zhuo. Interactions of Quercetin with Casein and Bovine Serum Albumin as well as Effects of Coexisting Carbon Nanotubes[J]. Acta Physico-Chimica Sinca, 2008, 24(03): 379-387.
[9] ALI Anwar; NABI Firdosa. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene[J]. Acta Physico-Chimica Sinca, 2008, 24(01): 47-54.
[10] YUAN Wei; LI He-Xian; WANG Ying; YANG Hai-Long; WANG Guo-Chang. Computer Simulation on Intermolecular Interaction of N-(1-naphthyl)-succinimide[J]. Acta Physico-Chimica Sinca, 2007, 23(05): 630-634.
[11] ZHANG Zhong; XU Xuan; ZUO Xiao-Xi; LI Wei-Shan. Stabilizing Effect of Amine on SmallMolecules in Electrolyte of LithiumBatteries[J]. Acta Physico-Chimica Sinca, 2007, 23(04): 526-530.
[12] Zhou Bao-Xue;Cai Wei-Min;Zou Li-Zhuang. Thermodynamic Functions of Transfer of Naphthalene from Water to Water-t-butyl Alcohol Solutions[J]. Acta Physico-Chimica Sinca, 2003, 19(09): 867-870.
[13] Tan Jin-Zhi;Xiao He-Ming;Gong Xue-Dong;Li Jin-Shan. Comparison of DFT with Ab initio Method on the Study of Intermolecular Interaction of (CH3ONO2)2[J]. Acta Physico-Chimica Sinca, 2002, 18(04): 307-314.
[14] Li Jin-Shan, Xiao He-Ming. lntermolecular lnteraction of (HN3)2[J]. Acta Physico-Chimica Sinca, 2000, 16(01): 36-40.