Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1149-1159    DOI: 10.3866/PKU.WHXB201703291
B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction
HE Yu1,2, WANG Yi-Bo1,2
1 Key Laboratory of High Performance Computational Chemistry, Guiyang 550025, P. R. China;
2 Network and Information Center of Guizhou University, Guiyang 550025, P. R. China
Download:   PDF(5073KB) Export: BibTeX | EndNote (RIS)       Supporting Info


A novel DFT-D method, B972-PFD, has been found by combining the B972 hybrid density functional with the empirical dispersion correction based on the spherical atom model (SAM). The performance of the B972-PFD method is assessed on the S66, S66x8, and S22 standard data sets, atmospheric hydrogen-bonded clusters, the Adenine-Thymine π…π stacked, Watson-Crick hydrogen-bonded complexes, and the methane to (H2O)20 water cluster. The benchmark results of the S66 test set show that B972-PFD and three recently developed density functionals, ωB97X-V, B97M-V, and ωB97M-V developed by the Head-Gordon group, are at the same level of accuracy, and have an root-mean-square deviation (RMSD) of binding energies less than 1 kJ·mol-1 relative to the CCSD(T)/CBS gold standard. The B972-PFD method also showed excellent accuracy in other data set tests. The basis set effect of the B972-PFD method has been benchmarked, and we recommend that the favorable price/performance ratios basis set is Pople's 6-311++G(2d,p).

Key wordsIntermolecular Interaction      DFT-D      Spherical atom model for dispersion correction      B972-PFD     
Received: 10 January 2017      Published: 29 March 2017
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (41165007) and Natural Science Foundation of Guizhou Province, China (20082116).

Corresponding Authors: WANG Yi-Bo     E-mail:
Cite this article:

HE Yu, WANG Yi-Bo. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.

URL:     OR

(1) Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 2427. doi: 10.1021/ct200294
(2) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. Chem. Sci. 2016, 7, 5032, doi: 10.1039/C6SC00705H
(3) Mardirossian, N.; Head-Gordon, M. J. Chem. Theory Comput. 2016, 12, 4303. doi: 10.1021/acs.jctc.6b00637
(4) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397. doi: 10.1039/B704725H
(5) Chai, J. D.; Mao, S. P. Chem. Phys. Lett. 2012, 538, 121. doi: 10.1016/j.cplett.2012.04.045
(6) Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2009, 131, 174105. doi: 10.1063/1.3244209.
(7) Zhang, Y.; Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4963. doi: 10.1073/pnas.0901093106
(8) Zhang, I. Y.; Xu, X.; Jung, Y.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 19896. doi:10.1073/pnas.1115123108
(9) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Chem. Rev. 2016, 116 (SI), 5105. doi: 10.1021/acs.chemrev.5b00533.
(10) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
(11) Vydrov, O. A.; Van Voorhis, T. J. Chem. Phys. 2010, 133, 244103. doi: 10.1063/1.3521275
(12) Mardirossian, N.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2014, 16, 9904. doi: 10.1039/c3cp54374a
(13) Mardirossian, N.; Head-Gordon, M. J. Chem. Phys. 2015, 142, 074111. doi: 10.1063/1.4907719
(14) Mardirossian, N.; Head-Gordon, M. J. Chem. Phys. 2016, 144, 214110. doi: 10.1063/1.4952647
(15) Austin, A.; Petersson, G. A.; Frisch, M. J.; Dobek, F. J.; Scalmani, G.; Throssell, K. J. Chem. Theory Comput. 2012, 8, 4989. doi: 10.1021/ct300778e
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2009.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 16, Rev.A.03; Gaussian Inc.: Wallingford CT, 2016.
(18) He, Y.; Wang, Y. B. Acta Phys. -Chim. Sin. 2016, 32, 2709. [何 禹, 王一波. 物理化学学报, 2016, 32, 2709]doi: 10.3866/PKU.WHXB201609132
(19) Wilson, P. J.; Bradley, T. J.; Tozer, D. J. J. Chem. Phys. 2001, 115, 9233. doi: 10.1063/1.1412605
(20) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(21) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
(22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(23) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522
(24) Becke, A. D. J. Chem. Phys. 1996, 104, 1040. doi: 10.1063/1.470829
(25) Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401
(26) Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106. doi: 10.1063/1.2834918
(27) Becke, A. D. J. Chem. Phys. 1997, 8554. doi: 10.1063/1.475007
(28) Hamprecht, F. A.; Cohen, A.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264. doi: 10.1063/1.477267
(29) Thomas, W. K.; David, J. T. J. Chem. Phys. 2005, 123, 121103. doi: 10.1063/1.2061227
(30) Boese, A. D.; Martin, J. M. J. Chem. Phys. 2004, 121, 3405. doi: 10.1063/1.1774975
(31) Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2673. doi: 10.1073/pnas.0308730100
(32) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
(33) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. doi: 10.1063/1.462472
(34) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303
(35) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a
(36) Jurecak, P.; Sponer, J.; Cemy, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985. doi:10.1039/b600027d
(37) Elm, J.; Kristensen, K. Phys. Chem. Chem. Phys. 2017, 19, 1122. doi: 10.1039/c6cp06851k
(38) Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 3466. doi: 10.1021/ct200523a
(39) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Gill, P. M.; Head-Gordon, M. Mol. Phys. 2015, 113, 184. doi:10.1080/00268976.2014.952696
(40) Wang, Y. B.; Lin, Z. J. Am. Chem. Soc. 2003, 125, 6072. doi: 10.1021/ja028998g
(41) Wang, W. Z.; Sun, T.; Zhang, Y.; Wang, Y. B. J. Chem. Phys. 2015, 143, 4145. doi: 10.1063/1.4931121
(42) Sun, T.; Wang Y. B. Acta Phys. -Chim. Sin. 2011, 27, 2553. [孙 涛, 王一波. 物理化学学报, 2011, 27, 2553.]doi: 10.3866/PKU.WHXB20111017
(43) Li, M. M.; Wang, Y. B.; Zhang, Y.; Wang, W. Z. J. Phys. Chem. A 2016, 120, 5766. doi: 10.1021/acs.jpca.6b06492
(44) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. doi: 10.1039/b810189b
(45) Lin, Y. S.; Li, G. D.; Mao, S. P.; Chai, J. D. J. Chem. Theory Comput. 2013, 9.263. doi:10.1021/ct300715s
(46) Brauer, B.; Kesharwani, M. K.; Kozuch, S.; Martin, J. M. Phys. Chem. Chem. Phys. 2016, 18, 20905. doi: 10.1039/c6cp00688d.
(47) Deible, M. J.; Tuguldur, O.; Jordan K. D. J. Phys. Chem. B 2014, 118, 8257. doi: 10.1021/jp501592h
(48) Lao, K. U.; Herbert, J. M. J. Phys. Chem. A 2015, 119, 235. doi: 10.1021/jp5098603

[1] WANG Yue-Hong, LI Xiao-Yan, ZENG Yan-Li, MENG Ling-Peng, ZHANG Xue-Ying. Topological Analyses of Electron Density on π-hole Pnicogen Bonds in PO2X…PX3/PH2X (X = F, Cl, Br, CH3, NH2) Complexes[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 671-682.
[2] HE Yu, WANG Yi-Bo. An Improvement of the SAM Dispersion Correction in the APF-D Density Functional Method for Studying Intermolecular Interactions[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2709-2716.
[3] WANG Ying, YI Hai-Bo, LI Hui-Ji, DAI Qian, CAO Zhi-Wei, LU Yang. Effects of Interactions between Ions and Alanine Polar Groups on Alanine Associations in Saline Solution: Density Functional Theory and Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1035-1044.
[4] TAO Sha, YU Li-Juan, WU De-Yin, TIAN Zhong-Qun. Raman Spectra of Amino Wagging Vibrational Modes in p-π-Conjugated Molecules[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1609-1617.
[5] LOU Peng-Xiao, WANG Yu-Jie, BAI Guang-Yue, FAN Chao-Ying, Wang Yi-Lin. Direct Evidence for the Energy of Weak Interactions between Surfactant Molecules Using High Sensitivity Isothermal Titration Calorimetry[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1401-1407.
[6] SUN Tao, WANG Yi-Bo. Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2553-2558.
[7] ZHU Lin-Hong, SONG Le-Xin, CHEN Jie, YANG Jing, WANG Mang. Formation, Structure and Thermal Degradation of the Supramolecular Complex between β-Cyclodextrin and 18-Crown-6[J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1579-1586.
[8] CHEN Dai-Wu; XIE Qing-Ji; JIANG Xue-Qin; YAO Shou-Zhuo. Interactions of Quercetin with Casein and Bovine Serum Albumin as well as Effects of Coexisting Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2008, 24(03): 379-387.
[9] ALI Anwar; NABI Firdosa. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene[J]. Acta Phys. -Chim. Sin., 2008, 24(01): 47-54.
[10] YUAN Wei; LI He-Xian; WANG Ying; YANG Hai-Long; WANG Guo-Chang. Computer Simulation on Intermolecular Interaction of N-(1-naphthyl)-succinimide[J]. Acta Phys. -Chim. Sin., 2007, 23(05): 630-634.
[11] ZHANG Zhong; XU Xuan; ZUO Xiao-Xi; LI Wei-Shan. Stabilizing Effect of Amine on SmallMolecules in Electrolyte of LithiumBatteries[J]. Acta Phys. -Chim. Sin., 2007, 23(04): 526-530.
[12] Zhou Bao-Xue;Cai Wei-Min;Zou Li-Zhuang. Thermodynamic Functions of Transfer of Naphthalene from Water to Water-t-butyl Alcohol Solutions[J]. Acta Phys. -Chim. Sin., 2003, 19(09): 867-870.
[13] Tan Jin-Zhi;Xiao He-Ming;Gong Xue-Dong;Li Jin-Shan. Comparison of DFT with Ab initio Method on the Study of Intermolecular Interaction of (CH3ONO2)2[J]. Acta Phys. -Chim. Sin., 2002, 18(04): 307-314.
[14] Li Jin-Shan, Xiao He-Ming. lntermolecular lnteraction of (HN3)2[J]. Acta Phys. -Chim. Sin., 2000, 16(01): 36-40.