Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1197-1204    DOI: 10.3866/PKU.WHXB201703293
Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries
GU Ze-Yu1, GAO Song1,HUANG Hao1, JIN Xiao-Zhe1, WU Ai-Min1, CAO Guo-Zhong1,2
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Download:   PDF(3163KB) Export: BibTeX | EndNote (RIS)      


Multi-walled carbon nanotube constrained SnS2 (SnS2@MWCNT) nanostructure is successfully realized through a facile 2-step process. Firstly, DC arc-discharge method is applied to fabricate Sn@MWCNT nanoparticles as the precursor that is subsequently converted into SnS2@MWCNT through low-temperature vulcanization. Various analytical methods, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy, are used to ascertain the microstructure and morphology of the SnS2@MWCNT nanoparticles. The results show that the SnS2@MWCNT nanoparticles have a uniform structure of SnS2 half-filled MWCNTs with average thickness of 10 nm and average length of ~400 nm. The electrochemical properties of the as-prepared SnS2@MWCNT nanoparticles are studied using the nanoparticles as anode materials in Li-ion batteries. The SnS2@MWCNT electrode presents high initial Coulombic efficiency of 71% and maintains a capacity of 703 mAh·g-1 after 50 cycles. Excellent performance of the batteries benefits from the active electrochemical reactions of various chemical components, multi-step lithiation/delithiation behaviors, and the structural constraint from the MWCNTs.

Key wordsLithium-ion battery      Multi-walled carbon Nanotube      Tin disulfide      Anode      Nanomaterial     
Received: 04 January 2017      Published: 29 March 2017
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (51171033), Science and Technology Supported Plan (Industry Field) of Changzhou, China (CE20160022), Project of Innovative Talents Introduction and Training of Changzhou, China (CQ20153002) and Fundamental Research Funds for the Central Universities, China (DUT16LAB03, DUT15LAB05).

Corresponding Authors: HUANG Hao     E-mail:
Cite this article:

GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.

URL:     OR

(1) Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. Nat. Commun. 2015, 6, 5682. doi: 10.1038/ncomms6682
(2) Manthiram, A.; Chung, S.; Zu, C. Adv. Mater. 2015, 27, 1980. doi: 10.1002/adma.201405115
(3) Yao, Z. D.; Wei, W; Wang, J. L.; Yang, J.; Nu, L. Y. N. 2011, 27.1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.] doi: 10.3866/PKU.WHXB20110345
(4) Chang, K.; Wang, Z.; Huang, G.; Li, H.; Chen, W.; Lee, J. Y. J. Power Sources 2012, 201, 259. doi: 10.1016/j.jpowsour.2011.10.132
(5) Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L.Q. 2011, 27, 97. [陈仕玉, 王兆祥, 房向鹏, 赵海雷, 刘效疆, 陈立泉. 物理化学学报, 2011, 27, 97.] doi: 10.3866/PKU.WHXB20110134
(6) Sun, H.; Ahmad, M.; Luo, J.; Shi, Y.; Shen, W.; Zhu, J. Mater. Res. Bull. 2014, 49, 319. doi: 10.1016/j.materresbull.2013.09.005
(7) Liu, Z.; Deng, H.; Mukherjee, P. P. ACS Appl. Mater. Inter. 2015, 7, 4000. doi: 10.1021/am5068707
(8) Bandura, A. V.; Evarestov, R. A. Surf. Sci. 2015, 641, 6. doi: 10.1016/j.susc.2015.04.027
(9) Nitta, N.; Yushin, G. Part. Part. Syst. Charact. 2014, 31, 317. doi: 10.1002/ppsc.201300231
(10) Ji, X.; Evers, S.; Black, R.; Nazar, L. F. Nat. Commun. 2011, 2, 325. doi: 10.1038/ncomms1293
(11) Manthiram, A.; Fu, Y.; Su, Y. Acc. Chem. Res. 2013, 46, 1125. doi: 10.1021/ar300179v
(12) Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Saraf, L.V.; Nie, Z.; Exarhos, G. J.; Liu, J. Adv. Mater. 2012, 24, 1176. doi: 10.1002/adma.201103392
(13) Ma, G.; Wen, Z.; Jin, J.; Lu, Y.; Rui, K.; Wu, X.; Wu, M.; Zhang, J. J. Power Sources 2014, 254, 353. doi: 10.1016/j.jpowsour.2013.12.085
(14) Guo, J.; Xu, Y.; Wang, C. Nano Lett. 2011, 11, 4288. doi: 10.1021/nl202297p
(15) Chen, J. J.; Jia, X.; She, Q. J.; Wang, C.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. Electrochim. Acta 2010, 55, 8062. doi: 10.1016/j.electacta.2010.01.069
(16) Zhang, F.; Dong, Y.; Huang, Y.; Huang, G.; Zhang, X. J. Phys. Conf. Series 2012, 339. doi:10.1088/1742-6596/339/1/012003
(17) Zhang, S.; Zhang, L.; Wang, W.; Xue, W. Synth. Met. 2010, 160, 2041. doi: 10.1016/j.synthmet.2010.07.029
(18) Liang, X.; Liu, Y.; Wen, Z.; Huang, L.; Wang, X.; Zhang, H. J. Power Sources 2011, 196, 6951. doi: 10.1016/j.jpowsour. 2010.11.132
(19) Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969. doi: 10.1149/1.1806394
(20) Cheon, S.; Ko, K.; Cho, J.; Kim, S.; Chin, E.; Kim, H. J. Electrochem. Soc. 2003, 150, A796. doi: 10.1149/1.1571532
(21) Luo, W.; Huang, L.; Guan, D. D.; He, R. H.; Li, F.; Mai, L.Q. 2016, 32, 1999. [罗 雯, 黄磊, 关豆豆, 贺汝涵, 李枫, 麦立强. 物理化学学报, 2016, 32, 1999.] doi: 10.3866/PKU.WHXB 201605032
(22) Liu, C.; Huang, H.; Cao, G.; Xue, F.; Paredes Camacho, R. A.; Dong, X. Electrochim. Acta 2014, 144, 376. doi: 10.1016/j.electacta.2014.07.068
(23) Marcinek, M.; Hardwick, L. J.; Richardson, T. J.; Song, X.; Kostecki, R. J. Power Sources 2007, 173, 965. doi: 10.1016/j.jpowsour.2007.08.084
(24) Nichols, J.; Deck, C.; Bandaru, P.; Saito, H. J. Appl. Phys. 2007, 102, 64306. doi: 10.1063/1.2783945
(25) Kim, H. S.; Chung, Y. H.; Kang, S. H.; Sung, Y. Electrochim. Acta 2009, 54, 3606. doi: 10.1016/j.electacta.2009.01.030
(26) Jiang, X.; Yang, X.; Zhu, Y.; Shen, J.; Fan, K.; Li, C. J. Power Sources 2013, 237, 178. doi: 10.1016/j.jpowsour.2013.03.048
(27) Noerochim, L.; Wang, J.; Chou, S.; Li, H.; Liu, H. Electrochim. Acta 2010, 56, 314. doi: 10.1016/j.electacta.2010.08.078
(28) Zhai, C.; Du, N.; Zhang, H.; Yu, J.; Yang, D. ACS Appl. Mater. Inter. 2011, 3, 4067. doi: 10.1021/am200933m
(29) Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. J. Phys. Chem. C 2009, 113, 11390. doi: 10.1021/jp901594g
(30) Wang, G.; Peng, J.; Zhang, L.; Zhang, J.; Dai, B.; Zhu, M.; Xia, L.; Yu, F. J. Mater. Chem. A 2015, 3, 3659. doi: 10.1039 /C4TA06384H
(31) Kim, T.; Kim, C.; Son, D.; Choi, M.; Park, B. J. Power Sources 2007, 167, 529. doi: 10.1016/j.jpowsour.2007.02.040
(32) Kim, H. S.; Chung, Y. H.; Kang, S. H.; Sung, Y. Electrochim. Acta 2009, 54, 3606. doi: 10.1016/j.electacta.2009.01.030
(33) Liu, J.; Wen, Y.; van Aken, P. A.; Maier, J.; Yu, Y. J. Mater. Chem. A 2015, 3, 5259. doi: 10.1039/c5ta00431d
(34) Liu, J.; Gu, M.; Ouyang, L.; Wang, H.; Yang, L.; Zhu, M. ACS Appl. Mater. Interfaces 2016, 8, 8052. doi: 10.1021/acsami.6b00627
(35) Huang, H.; Gao, S.; Wu, A.; Cheng, K.; Li, X.; Gao, X.; Zhao, J.; Dong, X.; Cao, G. Nano Energy 2017, 31, 74. doi: 10.1016/j.nanoen.2016.10.059
(36) Li, T.; Wang, Y.; Tang, R.; Qi, Y.; Lun, N.; Bai, Y.; Fan, R. ACS Appl. Mater. Interfaces 2013, 5, 9470. doi: 10.1021/am402205z
(37) Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. Nano Lett. 2013, 13, 5289. doi: 10.1021/nl402810d
(38) Liu, Y.; Yu, H.; Quan, X.; Chen, S.; Zhao, H.; Zhang, Y. Sci. Rep. 2014, 4, 6843. doi: 10.1038/srep06843

[1] ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[3] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[6] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[8] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[9] HUANG Hao, LONG Ran, XIONG Yu-Jie. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.
[10] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[11] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2339-2358.
[14] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[15] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.