Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1197-1204    DOI: 10.3866/PKU.WHXB201703293
ARTICLE     
Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries
Ze-Yu GU1,Song GAO1,Hao HUANG1,*(),Xiao-Zhe JIN1,Ai-Min WU1,Guo-Zhong CAO1,2
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
2 Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Download: HTML     PDF(3163KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Multi-walled carbon nanotube constrained SnS2 (SnS2@MWCNT) nanostructure is successfully realized through a facile 2-step process. Firstly, DC arc-discharge method is applied to fabricate Sn@MWCNT nanoparticles as the precursor that is subsequently converted into SnS2@MWCNT through low-temperature vulcanization. Various analytical methods, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy, are used to ascertain the microstructure and morphology of the SnS2@MWCNT nanoparticles. The results show that the SnS2@MWCNT nanoparticles have a uniform structure of SnS2 half-filled MWCNTs with average thickness of 10 nm and average length of ~400 nm. The electrochemical properties of the as-prepared SnS2@MWCNT nanoparticles are studied using the nanoparticles as anode materials in Li-ion batteries. The SnS2@MWCNT electrode presents high initial Coulombic efficiency of 71% and maintains a capacity of 703 mAh·g-1 after 50 cycles. Excellent performance of the batteries benefits from the active electrochemical reactions of various chemical components, multi-step lithiation/delithiation behaviors, and the structural constraint from the MWCNTs.



Key wordsLithium-ion battery      Multi-walled carbon Nanotube      Tin disulfide      Anode      Nanomaterial     
Received: 04 January 2017      Published: 29 March 2017
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(51171033);Science and Technology Supported Plan (Industry Field) of Changzhou, China(CE20160022);Project of Innovative Talents Introduction and Training of Changzhou, China(CQ20153002);Fundamental Research Funds for the Central Universities, China(DUT16LAB03);Fundamental Research Funds for the Central Universities, China(DUT15LAB05)
Corresponding Authors: Hao HUANG     E-mail: huanghao@dlut.edu.cn
Cite this article:

Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201703293     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1197

Fig 1 TEM images of SnS2@MWCNT nanostructure (a) TEM observation at the resolution of 500 nm; (b) TEM observation at the resolution of 100 nm; (c) configuration of multi-walled carbon nanotubes; (d) configuration of SnS2
Fig 2 Structural characterization of SnS2@MWCNT nanostructure (a) XRD patterns and (b) Raman spectra of SnS2@MWCNT nanostructure
Fig 3 Process of preparation of SnS2@MWCNT nanostructure and the mechanism of SnS2@MWCNT electrode during discharging/charging process
Fig 4 Electrochemical performance of SnS2@MWCNT electrode (a) cycling performance of SnS2@MWCNT and pure SnS2 at 300 mA?g-1; (b) discharge/charge curves for SnS2@MWCNT at 300 mA?g-1; (c) cycling performance of SnS2@MWCNT at different current densities of 300, 700 and 5000 mA?g-1
Fig 5 Cyclic voltammogram of SnS2@MWCNT electrode
Fig 6 (a) EIS of the SnS2@MWCNT electrode and pure SnS2 electrode; (b) EIS of the SnS2@MWCNT electrode after 1st and 3rd cycles; (c-e) Equivalent analog circuits of the SnS2@MWCNT electrode and pure SnS2
Fig 7 (a) InitialTEM images of SnS2@MWCNT nanostructure; (b) After 50 cycles TEM images of SnS2@MWCNT nanostructure
1 Liang X. ; Hart C. ; Pang Q. ; Garsuch A. ; Weiss T. ; Nazar L. F. Nat. Commun. 2015, 6, 5682.
2 Manthiram A. ; Chung S. ; Zu C. Adv. Mater. 2015, 27, 1980.
3 Yao, Z. D.; Wei, W; Wang, J. L.; Yang, J.; Nu, L. Y. N. 2011, 27.1005.
3 姚真东,魏巍,王久林,杨军,努丽燕娜.物理化学学报, 2011, 27, 1005. doi: 10.3866/PKU.WHXB20110345
4 Chang K. ; Wang Z. ; Huang G. ; Li H. ; Chen W. ; Lee J. Y. J. Power Sources 2012, 201, 259.
5 Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L.Q. 2011, 27, 97.
5 陈仕玉,王兆祥,房向鹏,赵海雷,刘效疆,陈立泉.物理化学学报, 2011, 27, 97. doi: 10.3866/PKU.WHXB20110134
6 Sun H. ; Ahmad M. ; Luo J. ; Shi Y. ; Shen W. ; Zhu J. Mater. Res. Bull. 2014, 49, 319.
7 Liu Z. ; Deng H. ; Mukherjee P. P. ACS Appl. Mater. Inter. 2015, 7, 4000.
8 Bandura A. V. ; Evarestov R. A. Surf. Sci. 2015, 641, 6.
9 Nitta N. ; Yushin G. Part. Part. Syst. Charact. 2014, 31, 317.
10 Ji X. ; Evers S. ; Black R. ; Nazar L. F. Nat. Commun. 2011, 2, 325.
11 Manthiram A. ; Fu Y. ; Su Y. Acc. Chem. Res. 2013, 46, 1125.
12 Xiao L. ; Cao Y. ; Xiao J. ; Schwenzer B. ; Engelhard M. H. ; Saraf L.V. ; Nie Z. ; Exarhos G. J. ; Liu J. Adv. Mater. 2012, 24, 1176.
13 Ma G. ; Wen Z. ; Jin J. ; Lu Y. ; Rui K. ; Wu X. ; Wu M. ; Zhang J. J. Power Sources 2014, 254, 353.
14 Guo J. ; Xu Y. ; Wang C. Nano Lett. 2011, 11, 4288.
15 Chen J. J. ; Jia X. ; She Q. J. ; Wang C. ; Zhang Q. ; Zheng M. S. ; Dong Q. F. Electrochim. Acta 2010, 55, 8062.
16 Zhang F. ; Dong Y. ; Huang Y. ; Huang G. ; Zhang X. J. Phys. Conf. Series 2012, 339
17 Zhang S. ; Zhang L. ; Wang W. ; Xue W. Synth. Met. 2010, 160, 2041.
18 Liang X. ; Liu Y. ; Wen Z. ; Huang L. ; Wang X. ; Zhang H. J. Power Sources 2011, 196, 6951.
19 Mikhaylik Y. V. ; Akridge J. R. J. Electrochem. Soc. 2004, 151, A1969.
20 Cheon S. ; Ko K. ; Cho J. ; Kim S. ; Chin E. ; Kim H. J. Electrochem. Soc. 2003, 150, A796.
21 Luo, W.; Huang, L.; Guan, D. D.; He, R. H.; Li, F.; Mai, L.Q. 2016, 32, 1999.
21 罗雯,黄磊,关豆豆,贺汝涵,李枫,麦立强.物理化学学报, 2016, 32, 1999. doi: 10.3866/PKU.WHXB201605032
22 Liu C. ; Huang H. ; Cao G. ; Xue F. ; Paredes Camacho R. A. ; Dong X. Electrochim. Acta 2014, 144, 376.
23 Marcinek M. ; Hardwick L. J. ; Richardson T. J. ; Song X. ; Kostecki R. J. Power Sources 2007, 173, 965.
24 Nichols J. ; Deck C. ; Bandaru P. ; Saito H. J. Appl. Phys. 2007, 102, 64306.
25 Kim H. S. ; Chung Y. H. ; Kang S. H. ; Sung Y. Electrochim. Acta 2009, 54, 3606.
26 Jiang X. ; Yang X. ; Zhu Y. ; Shen J. ; Fan K. ; Li C. J. Power Sources 2013, 237, 178.
27 Noerochim L. ; Wang J. ; Chou S. ; Li H. ; Liu H. Electrochim. Acta 2010, 56, 314.
28 Zhai C. ; Du N. ; Zhang H. ; Yu J. ; Yang D. ACS Appl. Mater. Inter. 2011, 3, 4067.
29 Ruffo R. ; Hong S. S. ; Chan C. K. ; Huggins R. A. ; Cui Y. J. Phys. Chem. C 2009, 113, 11390.
30 Wang G. ; Peng J. ; Zhang L. ; Zhang J. ; Dai B. ; Zhu M. ; Xia L. ; Yu F. J. Mater. Chem. A 2015, 3, 3659.
31 Kim T. ; Kim C. ; Son D. ; Choi M. ; Park B. J. Power Sources 2007, 167, 529.
32 Kim H. S. ; Chung Y. H. ; Kang S. H. ; Sung Y. Electrochim. Acta 2009, 54, 3606.
33 Liu J. ; Wen Y. ; van Aken P. A. ; Maier J. ; Yu Y. J. Mater. Chem. A 2015, 3, 5259.
34 Liu J. ; Gu M. ; Ouyang L. ; Wang H. ; Yang L. ; Zhu M. ACS Appl. Mater. Interfaces 2016, 8, 8052.
35 Huang H. ; Gao S. ; Wu A. ; Cheng K. ; Li X. ; Gao X. ; Zhao J. ; Dong X. ; Cao G. Nano Energy 2017, 31, 74.
36 Li T. ; Wang Y. ; Tang R. ; Qi Y. ; Lun N. ; Bai Y. ; Fan R. ACS Appl. Mater. Interfaces 2013, 5, 9470.
37 Xia T. ; Zhang W. ; Murowchick J. ; Liu G. ; Chen X. Nano Lett. 2013, 13, 5289.
38 Liu Y. ; Yu H. ; Quan X. ; Chen S. ; Zhao H. ; Zhang Y. Sci. Rep. 2014, 4, 6843.
[1] Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 348-360.
[2] Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 219-226.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[8] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[9] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[10] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[11] HUANG Hao, LONG Ran, XIONG Yu-Jie. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 661-669.
[12] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 486-499.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[14] Shuai LIU,Lu YAO,Qin ZHANG,Lu-Lu LI,Nan-Tao HU,Liang-Ming WEI,Hao WEI. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2339-2358.
[15] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.