Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1123-1129    DOI: 10.3866/PKU.WHXB201703301
ARTICLE     
Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis
Shuai-Qi SUN1,Yan-Hui YI1,Li WANG1,Jia-Liang ZHANG2,Hong-Chen GUO1,*()
1 State Key Laboratory of Fine Chemicals, Department of Catalytic Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
2 School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
Download: HTML     PDF(2044KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Bimetallic Fe-Co, Fe-Ni, Mo-Co, and Mo-Ni catalysts, with total metal contents of 10 wt% and bimetallic molar ratios of 1:1, were prepared by the incipient wetness impregnation method and their activities for ammonia decomposition in the presence of plasma were studied. The Fe-Ni bimetallic catalyst exhibited a better synergistic effect than the other three bimetallic catalysts. The effect of the Fe/Ni molar ratio on its catalytic activity was also investigated. A 6:4 Fe/Ni molar ratio resulted in the highest ammonia decomposition activity and stability. The catalysts were characterized by N2 adsorption-desorption, XRD, H2-TPR, and HRTEM. The characterization results indicated that NiFe2O4 with a spinel structure was formed in the optimal Fe-Ni bimetallic catalysts and this structure favors the reduction of Fe and Ni. In other words, it is easy to achieve the metallic state of active components for the Fe-Ni bimetallic catalysts, which could be the reason for the high catalytic activity of bimetallic catalysts for NH3 decomposition.



Key wordsPlasma      Fe-Ni      Bimetallic catalysts      Ammonia decomposition      Hydrogen     
Received: 28 February 2017      Published: 30 March 2017
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(20473016);The project was supported by the National Natural Science Foundation of China(20673018)
Corresponding Authors: Hong-Chen GUO     E-mail: hongchenguo@163.com
Cite this article:

Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis. Acta Physico-Chimica Sinca, 2017, 33(6): 1123-1129.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201703301     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1123

Fig 1 Scheme of NH3 decomposition by dielectric barrier discharge plasma-catalysis method
Fig 2 Activity comparision of Fe-Ni bimetallic catalystand other catalysts Reaction conditions: NH3 feed rate 120 mL·min?1, temperature 500 ℃, the weight of catalysts 0.5 g, discharge gap 3 mm, discharge frequency 10 kHz
Fig 3 Activity of Fe-Ni bimetallic catalysts Reaction conditions: NH3 feed rate 120 mL·min?1, temperature500 ℃, weight of catalysts 0.5 g, discharge gap 3 mm, discharge frequency 10 kHz
Fig 4 N2 adsorption-desorption isotherm of SiO2
Catalyst SBET Pore Volume Pore diameter
(m2·g?1) (cm3·g?1) (nm)
SiO2211.40.6911.26
10Fe/SiO2169.90.5111.93
7Fe-3Ni/SiO2183.30.6113.4
6Fe-4Ni/SiO2184.70.6113.3
2Fe-8Ni/SiO2174.40.5412.4
10Ni/SiO2168.70.5212.3
Table 1 Pore structure properties of SiO2 andFe-Ni/SiO2 catalysts
Fig 5 XRD profiles of the precursors of SiO2supported Fe, Ni and Fe-Ni bimetallic catalysts (a) 10Fe/SiO2; (b) 9Fe-1Ni/SiO2; (c) 7Fe-3Ni/SiO2; (d) 6Fe-4Ni/SiO2; (e) 5Fe-5Ni/SiO2; (f) 2Fe-8Ni/SiO2; (g) 10Ni/SiO2
Fig 6 (A) H2-TPR profiles of the precursors of SiO2supported Fe, Ni and Fe-Ni bimetallic catalysts; (B) splitpeaks in 200?700 ℃ of H2-TPR for7Fe-3Ni/SiO2 and 6Fe-4Ni/SiO2 (a) 10Fe/SiO2; (b) 9Fe-1Ni/SiO2; (c) 7Fe-3Ni/SiO2; (d) 6Fe-4Ni/SiO2; (e) 2Fe-8Ni/SiO2; (f) 10Ni/SiO2
Fig 7 (a, b) HRTEM images of bimetallic catalyst6Fe-4Ni/SiO2; (c) EDX element analysis of circulararea in (b)
Fig 8 Stability of 6Fe-4Ni/SiO2 bimetallic catalysts Reaction conditions: NH3 feed rate 120 mL·min?1, discharge gap 3 mm, discharge frequency 10 kHz
1 Bell T. E. ; Torrente-Murciano L. Top. Catal. 2016, 59, 1438.
2 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32, 1556.
2 常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学, 2016, 32, 1556.
3 García-Bordejé E. ; Armenise S. ; Roldán L. Catal. Rev. 2014, 56, 220.
4 Schüth F. ; Palkovits R. ; Schl?gl R. ; Su D. S. Energy Environ. Sci. 2012, 5, 6278.
5 Boisen A. ; Dahl S. ; Norskov J. K. ; Christensen C. H. J. Catal. 2005, 230, 309.
6 Zhang J. ; Muller J. O. ; Zheng W. Q. ; Wang D. ; Su D. S. ; Schlogl R. Nano Lett. 2008, 8, 2738.
7 Liang C. H. ; Li W. Z. ; Wei Z. B. ; Xin Q. ; Li C. Ind. Eng. Chem. Res. 2000, 39, 3694.
8 Duan X. Z. ; Qian G. ; Zhou X. G. ; Chen D. ; Yuan W. K. Chem. Eng. J. 2012, 207, 103.
9 Wang L. ; Zhao Y. ; Liu C. Y. ; Gong W. M. ; Guo H. C. Chem. Commun. 2013, 49, 3787.
10 Wang L. ; Yi Y. H. ; Zhao Y. ; Zhang R. ; Zhang J. L. ; Guo H. C. ACS Catal. 2015, 5, 4167.
11 Lee M. S. ; Lee J. Y. ; Lee D. W. ; Moon D. J. ; Lee K. Y. Int. J. Hydrog. Energy 2012, 37, 11218.
12 Zheng W. Q. ; Zhang J. ; Ge Q. J. ; Xu H. Y. ; Li W. Z. Appl. Catal. B-Environ. 2008, 80, 98.
13 Lorenzut B. ; Montini T. ; Bevilacqua M. ; Fornasiero P. Appl. Catal. B-Environ. 2012, 125, 409.
14 Zhang L. F. ; Li M. ; Ren T. Z. ; Liu X. Y. ; Yuan Z. Y. Int. J.Hydrog. Energy 2015, 40, 2648.
15 Wang L. J. ; Zhang C. L. ; Li S. ; Wu T. H. Chin. J. Inorg. Chem. 1996, 12, 377.
15 王力军; 张春雷; 李爽; 吴通好. 无机化学学报, 1996, 12, 377.
16 Qin W. Q. ; Yang C. R. ; Yi R. ; Gao G. H. J. Nanomater. 2011, 2011, 1.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 247-255.
[3] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[4] Xiaoyu JIANG,Wei WU,Yirong MO. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 278-285.
[5] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1865-1874.
[6] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1699-1708.
[7] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[8] Chun-Lei WEI,Jie GAO,Kai WANG,Mei DONG,Wei-Bin FAN,Zhang-Feng QIN,Jian-Guo WANG. Effect of Hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1483-1491.
[9] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[10] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[11] . Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1108-1113.
[12] LIAN Chao, ZHANG Kai, WANG Yuan. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 984-992.
[13] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 993-1000.
[14] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[15] YAO Qian, PENG Li-Juan, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Energy Barriers and Rate Constants of Hydrogen Abstraction from Alkanes by Hydroperoxyl Radical[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 763-768.