Please wait a minute...
Acta Phys. -Chim. Sin.
Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis
SUN Shuai-Qi1, YI Yan-Hui1, WANG Li1, ZHANG Jia-Liang2, GUO Hong-Chen1
1 State Key Laboratory of Fine Chemicals, Department of Catalytic Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
Download:   PDF(2044KB) Export: BibTeX | EndNote (RIS)      


Bimetallic Fe-Co, Fe-Ni, Mo-Co, and Mo-Ni catalysts, with total metal contents of 10 wt% and bimetallic molar ratios of 1:1, were prepared by the incipient wetness impregnation method and their activities for ammonia decomposition in the presence of plasma were studied. The Fe-Ni bimetallic catalyst exhibited a better synergistic effect than the other three bimetallic catalysts. The effect of the Fe/Ni molar ratio on its catalytic activity was also investigated. A 6:4 Fe/Ni molar ratio resulted in the highest ammonia decomposition activity and stability. The catalysts were characterized by N2 adsorption-desorption, XRD, H2-TPR, and HRTEM. The characterization results indicated that NiFe2O4 with a spinel structure was formed in the optimal Fe-Ni bimetallic catalysts and this structure favors the reduction of Fe and Ni. In other words, it is easy to achieve the metallic state of active components for the Fe-Ni bimetallic catalysts, which could be the reason for the high catalytic activity of bimetallic catalysts for NH3 decomposition.

Key wordsPlasma      Fe-Ni      Bimetallic catalysts      Ammonia decomposition      Hydrogen     
Received: 28 February 2017      Published: 30 March 2017
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20473016, 20673018)

Corresponding Authors: GUO Hong-Chen     E-mail:
Cite this article:

SUN Shuai-Qi, YI Yan-Hui, WANG Li, ZHANG Jia-Liang, GUO Hong-Chen. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.

URL:     OR

(1) Bell, T. E.; Torrente-Murciano, L. Top. Catal. 2016, 59, 1438. doi: 10.1007/s11244-016-0653-4
(2) Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32, 1556. [常进法, 肖 瑶, 罗兆艳, 葛君杰, 刘长鹏, 邢 巍. 物理化学学, 2016, 32, 1556.]doi: 10.3866/PKU.WHXB201604291
(3) García-Bordejé, E.; Armenise, S.; Roldán, L. Catal. Rev. 2014, 56, 220. doi: 10.1080/01614940.2014.903637
(4) Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Energy Environ. Sci.2012, 5, 6278. doi: 10.1039/c2ee02865d
(5) Boisen, A.; Dahl, S.; Norskov, J. K.; Christensen, C. H. J. Catal. 2005, 230, 309. doi:10.1016/j.jcat.2004.12.013
(6) Zhang, J.; Muller, J. O.; Zheng, W. Q.; Wang, D.; Su, D. S.; Schlogl, R. Nano Lett. 2008, 8, 2738. doi: 10.1021/nl8011984
(7) Liang, C. H.; Li, W. Z.; Wei, Z. B.; Xin, Q.; Li, C. Ind. Eng. Chem. Res. 2000, 39, 3694. doi: 10.1021/ie990931n
(8) Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Chem. Eng. J. 2012, 207, 103. doi: 10.1016/j.cej.2012.05.100
(9) Wang, L.; Zhao, Y.; Liu, C. Y.; Gong, W. M.; Guo, H. C. Chem. Commun. 2013, 49, 3787. doi: 10.1039/c3cc41301b
(10) Wang, L.; Yi, Y. H.; Zhao, Y.; Zhang, R.; Zhang, J. L.; Guo, H. C. ACS Catal. 2015, 5, 4167. doi: 10.1021/acscatal.5b00728
(11) Lee, M. S.; Lee, J. Y.; Lee, D. W.; Moon, D. J.; Lee, K. Y. Int. J. Hydrog. Energy 2012, 37, 11218. doi: 10.1016/j.ijhydene.2012.04.130
(12) Zheng, W. Q.; Zhang, J.; Ge, Q. J.; Xu, H. Y.; Li, W. Z. Appl. Catal. B-Environ. 2008, 80, 98. doi: 10.1016/j.apcatb.2007.11.008
(13) Lorenzut, B.; Montini, T.; Bevilacqua, M.; Fornasiero. P. Appl. Catal. B-Environ. 2012, 125, 409. doi: 10.1016/j.apcatb.2012.06.011
(14) Zhang, L. F.; Li, M.; Ren, T. Z.; Liu, X. Y.; Yuan, Z. Y. Int. J. Hydrog. Energy 2015, 40, 2648. doi: 10.1016/j.ijhydene.2014.12.079
(15) Wang, L. J.; Zhang, C. L.; Li, S.; Wu, T. H. Chin. J. Inorg. Chem. 1996, 12, 377. [王力军, 张春雷, 李 爽, 吴通好. 无机化学学报, 1996, 12, 377.]
(16) Qin, W. Q.; Yang, C. R.; Yi, R.; Gao, G. H. J. Nanomater. 2011, 2011, 1. doi: 10.1155/2011/1592

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[2] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 278-285.
[4] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[5] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1699-1708.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[7] WEI Chun-Lei, GAO Jie, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Effect of Hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1483-1491.
[8] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[9] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[10] WU Guang-Xin, PENG Wang-Jun, ZHANG Jie-Yu. Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1108-1113.
[11] LIAN Chao, ZHANG Kai, WANG Yuan. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 984-992.
[12] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 993-1000.
[13] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[14] YAO Qian, PENG Li-Juan, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Energy Barriers and Rate Constants of Hydrogen Abstraction from Alkanes by Hydroperoxyl Radical[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 763-768.
[15] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.