Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1230-1235    DOI: 10.3866/PKU.WHXB201703311
Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst
WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi
College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
Download:   PDF(2564KB) Export: BibTeX | EndNote (RIS)      


A composite hydrogel consisting of well-dispersed Pt-Cu nanoparticles (NPs) supported on three-dimensional (3D) graphene (Pt-Cu@3DG) was successfully prepared by mild chemical reduction. The 3D interconnected macroporous structure of the graphene framework not only possesses large specific surface area that allows high metal loadings, but also facilitates mass transfer during the catalytic reaction. The Pt-Cu bimetallic alloy NPs show good catalytic activity compared with Pt NPs and reduce the content of Pt NPs used, thereby lowering costs. The morphology and composition of the Pt-Cu@3DG composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The catalysis studies indicate that the resulting composites can be used as an efficient, inexpensive, recyclable, and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol under mild conditions.

Key wordsThree dimensional graphene      Pt-Cu nanoparticle      Catalytic reaction      Pore structure      Composite     
Received: 12 December 2016      Published: 31 March 2017
MSC2000:  O643  

The project was supported by the Key Project of Shanghai Science and Technology Committee (14231200300) and Shanghai Key Laboratory of Green Chemistry and Chemical Processes.

Corresponding Authors: WANG Yuan-Yuan     E-mail:
Cite this article:

WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.

URL:     OR

(1) Bai, X. J.; Hou, M.; Liu, C.; Wang, B.; Cao, H.; Wang, D. Acta Phys. -Chim. Sin. 2017, 33, 377.[白雪君, 侯敏, 刘婵, 王彪, 曹辉, 王东. 物理化学学报, 2017, 33, 377.]doi: 10.3866/PKU.WHXB201610272
(2) Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Nat. Mater. 2011, 10, 780. doi: 10.1038/nmat3087
(3) Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S. B.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2012, 134, 19532. doi: 10.1021/ja308676h
(4) Scheuermann, C. M.; Rumi, L.; Steurer, P.; Mvlhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262. doi: 10.1021/ja901105a
(5) Subrahmanyam, K. S.; Manna, A. K.; Pati, S. K.; Rao, C. R. Chem. Phys. Lett. 2010, 497, 70. doi:10.1016/j.cplett.2010. 07.091
(6) Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Nat. Commun.2012, 3, 187. doi: 10.1038/ncomms2251
(7) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z
(8) Ji, X. L.; Lee, K. T.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286. doi: 10.1038/nchem.553
(9) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. doi: 10.1038/nature04233
(10) Li, Y. R; Chen, J.; Huang, L.; Li, C.; Shi, G. Q. Adv. Electron. Mater.2015, 1, 1. doi: 10.1002/aelm.201500004
(11) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(12) Zhang, M.; Lu, X.; Wang, H. Y.; Liu, X.; Qin, Y. J.; Zhang, P.; Guo, Z.X. RSC Adv. 2016, 6, 35945. doi: 10.1039/c6ra01772j
(13) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
(14) Liu, Y.; Li, D. C.; Stamenkovic, V. R.; Soled, S.; Henao, J. D.; Sun, S.H. ACS Catal. 2011, 1, 1719. doi: 10.1021/cs200430r
(15) Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang. J. Y. Angew. Chem. Int. Edit. 2010, 49, 6848. doi: 10.1002/anie.201002888
(16) Stamenkovic, V. R.; Mun, B.; Arenz, S. M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840
(17) Jia, Y.; Su. J.; Chen, Z.; Tan, B.; Chen, Q.; Cao, Z.; Jiang, Y.; Xie, Z.; Zheng, L. RSC Adv. 2015, 5, 18153. doi: 10.1039/c4ra15673k
(18) Nie, R.; Shi, J.; Du, W.; Hou, Z. Appl. Catal. A: Gen. 2014, 473, 1. doi: 10.1016/j.apcata.2013.12.029
(19) Gümeci, C.; Cearnaigh, D. U.; Casadonte, D. J.; Korzeniewski, C. J. Mater. Chem. A 2013, 1, 2322. doi: 10.1039/c2ta00957a
(20) Dai, L.; Mo, S. G.; Qin, Q.; Zhao, X. J.; Zheng, N. F. Small 2016, 12, 1572. doi: 10.1002/smll.201502741
(21) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Can, L. M. Langmuir 2004, 20, 181. doi: 10.1021/la035204i
(22) Yu, X.; Wang, D.; Peng, Q.; Li, Y. Chem. Eur. J. 2013, 19, 233. doi: 10.1002/chem.201203332
(23) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Tseng, Y. L.; Liu, D. C.; Lee, J. F. J Phys. Chem. B 2004, 108, 20427. doi: 10.1021/jp0495592
(24) Gong, M. X.; Fu, C. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. ACS Appl. Mater. Inter. 2014, 6, 7301. doi: 10.1021/am500656j
(25) Mott, D.; Luo, J.; Smith, A. Nano. Res. Lett. 2007, 2, 12. doi: 10.1007/s11671-006-9022-8
(26) Zhao, W. G.; Su, L.; Zhou, Z. N.; Zhang, H. J.; Lu, L. L.; Zhang, S. W. Acta Phys. -Chim. Sin. 2015, 31, 145.[赵万国, 苏丽, 周振宁, 张海军, 鲁礼林, 张少伟. 物理化学学报, 2015, 31, 145.] doi: 10.3866/PKU.WHXB201410241

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[2] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1715-1720.
[3] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[4] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[5] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 968-975.
[6] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[7] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 435-440.
[8] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.
[9] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[10] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[11] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[12] LI Guang-Yong, WU Xiao-Han, HE Wei-Na, FANG Jian-Hui, ZHANG Xue-Tong. Controlled Assembly of Graphene-Based Aerogels[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2146-2158.
[13] LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1734-1746.
[14] SUN Li-Yuan, ZHANG Ya-Fei, GONG Yan-Jun. Structural Features and Application of Micro-Microporous Composite Zeolites[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1105-1122.
[15] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.