Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1214-1222    DOI: 10.3866/PKU.WHXB201704075
ARTICLE     
Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation
Yi-Jian CHEN1,*(),Hong-Tao ZHOU1,Ji-Jiang GE1,Gui-Ying XU2
1 College of Petroleum Engineering, China University of Petroleum(Huadong), Qingdao 266580, Shandong Province, P. R. China
2 Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
Download: HTML     PDF(2531KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The aggregation behavior of the double-chained anionic surfactant 1-alkyl-decyl sodium sulfonate (1-Cm-C9-SO3-Na) at the air/liquid interface was investigated using molecular dynamics simulation. The influences of the m value on the interfacial properties of the surfactant were compared using density profile and radial distribution function (RDF). The results showed that the hydrophobic ability of the surfactant increase and the slant angles of hydrophobic carbon chains decrease with increasing m. For m=4, the 1-C4-C9-SO3Na form aggregates by lying on the interface; the S-S and S-Na+ interactions are the highest for m=4 among all systems studied, while the hydration ability of its polar head is the weakest. The simulation and experimental results show that the interfacial performance is the best for 1-C4-C9-SO3Na.



Key wordsMolecular dynamics simulation      1-Alkyl-decyl sodium sulfonate      Air/liquid interface      Aggregation behavior     
Received: 13 October 2016      Published: 07 April 2017
MSC2000:  O641  
Fund:  The project was supported by the Shandong Provincial Natural Science Foundation, China(ZR2014EZ002);National Natural Science Foundation of China(51574266)
Corresponding Authors: Yi-Jian CHEN     E-mail: chenyijiancs@126.com
Cite this article:

Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation. Acta Physico-Chimica Sinca, 2017, 33(6): 1214-1222.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704075     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1214

Fig 1 Scheme of chemical structures for 1-Cm-C9-SO3Na and charge distribution in molecules Hydrogen atoms are not shown.
Fig 2 Balanced configurations for all systems (A) m = 0; (B) m = 2; (C) m = 4; (D) m = 6; (E) m = 8; (F) m = 9. Thecarbon atoms (gray), hydrogen atoms in the carbon chains (white), sulfur atoms (yellow) and Na+ ions (purple) are highlighted.
Fig 3 Density profiles of different components (A) m = 0; (B) m = 2; (C) m = 4; (D) m = 6; (E) m = 8; (F) m = 9
m 1-Cm-C9-SO3? Na+
Peak position Peak value Peak position Peak value
nm (g·cm?3) nm (g·cm?3)
01.888.741.236.64
21.9310.641.535.98
41.9311.171.587.83
61.9310.531.588.54
81.9310.441.438.80
91.9810.451.438.32
Table 1 Position and values of the highest peak of1-Cm-C9-SO3? and Na+ in the density profiles
Fig 4 Scheme of slant angle of carbon chains atthe interface
m Long carbon chain φ1/(°) Short carbon chain φ2/(°)
lz/nm l/nm lz/nm l/nm
00.331.0371.3???
20.691.0850.30.220.2632.2
40.491.1063.50.070.5282.3
60.691.1051.20.490.7549.2
80.681.1252.60.760.9637.7
90.611.1357.30.621.0353.3
Table 2 Balanced length and slant angles of carbon chains
Fig 5 Balanced chemical structures of 1-Cm-C9-SO3- The carbon atoms (gray), sulfur atoms (yellow) and oxygen atoms(red) are highlighted, hydrogen atoms are not shown. color online
Fig 6 Relation of critical micelle concentration andsurface pressure of 1-Cm-C9-SO3Na withthe change of carbon chain (45 ℃) 34
Fig 7 RDF between head group and othercomponents in the system A: S-S; B: S-Na+; C: S-Ow
m S-S S-Na+ S-Ow
Peakposition/nm Peak value Peakposition/nm Peak value The first peakposition/nm Peak value The second peakposition/nm Peak value
00.558.870.27564.870.2551.860.3352.32
20.498.55103.711.802.24
40.4919.17128.061.622.00
60.499.7281.661.782.16
80.578.0773.691.732.17
90.597.6270.331.712.18
Table 3 The peak positions and value in the RDFs
1 Han D. ; Shen P. P. The Principle and Application of Surfactants in Enhanced Oil Recovery Beijing: Petroleum Industry Press, 2001, 24- 27.
1 韩东; 沈平平. 表面活性剂驱油原理及应用, 北京: 石油工业出版社, 2001, 24- 27.
2 Misra S. K. ; Srivastava I. ; Tripathi I. ; Daza E. ; Ostadhossein F. ; Pan D. J. Am. Chem. Soc. 2017, 139, 1746.
3 Wedel B. ; Br?ndel T. ; Bookhold J. ; Hellweg T. ACS Omega 2017, 2, 84.
4 Sandhu S. ; Kumar R. ; Tripathi N. ; Singh H. ; Singh P. ; Kumar S. Sensor Actuat B-Chem. 2017, 241, 8.
5 Guan Z. ; Tang X. Y. ; Nishimura T. ; Huang Y. M. ; Reid B. J. J. Hazard Mater. 2017, 322, 205.
6 Liu Z. ; Cao M. W. ; Chen Y. ; Fan Y. X. ; Wang D. ; Xu H. ; Wang Y. L. J. Phys. Chem. B 2016, 120, 4102.
7 Li Z. P. ; Li Q. Y. Oilfield Chemistry 1985, 2 (3), 204.
7 李之平; 李庆莹. 油田化学, 1985, 2 (3), 204.
8 Wang C. ; Yan P. ; Xiao J. X. Acta Phys. -Chim. Sin. 2009, 25 (9), 1775.
8 王晨; 严鹏; 肖进新. 物理化学学报, 2009, 25 (9), 1775.
9 Xu G. Y. ; Luan Y. X. ; Liu J. Acta Phys. -Chim. Sin. 2005, 21 (4), 450.
9 徐桂英; 栾玉霞; 刘军. 物理化学学报, 2005, 21 (4), 450.
10 De T. K. ; Maitra A. Adv. Colloid Interface Sci. 1995, 59, 95.
11 Yu T. ; Li Z. ; Ding W. ; Luo S. Q. ; Luan H. X. ; Tong W. ; Qu G.S. ; Cheng J. C. Acta Phys. -Chim. Sin. 2010, 26 (2), 317.
11 于涛; 李钟; 丁伟; 罗石琼; 栾和鑫; 童维; 曲广淼; 程杰成. 物理化学学报, 2010, 26 (2), 317.
12 Yu T. ; Tong W. ; Su Y. B. ; Ding W. Chin. J. Appl. Chem. 2010, 27 (4), 466.
12 于涛; 童维; 宿雅彬; 丁伟. 应用化学, 2010, 27 (4), 466.
13 Yu T. ; Luo S. Q. ; Ding W. ; Wang H. M. ; Yuan D. D. ; Qu G. M. ; Li Z. Chin. J. Appl. Chem. 2012, 29 (9), 1060.
13 于涛; 罗石琼; 丁伟; 王会敏; 袁丹丹; 曲广淼; 李钟. 应用化学, 2012, 29 (9), 1060.
14 Pang J. Y. ; Zhao T. T. ; Xu G. Y. J. Surf. Deterg. 2016, 19, 1015.
15 Sun H. Q. ; Zhao T. T. ; Cao X. L. ; Yuan S. L. ; Wang Q. W. ; Li X.S. ; Xu G. Y. Acta Chim. Sin. 2011, 69 (9), 1047.
15 孙焕泉; 赵涛涛; 曹绪龙; 苑世领; 王其伟; 李雪松; 徐桂英. 化学学报, 2011, 69 (9), 1047.
16 Griffin L. R. ; Browning K. L. ; Lee S. Y. ; Skoda M. W. A. ; Rogers S. ; Clarke S. M. Langmuir 2016, 32, 13054.
17 Yu Y. C. ; Xiao H. M. Acta Phys. -Chim. Sin. 2009, 25 (1), 30.
17 于艳春; 肖鹤鸣. 物理化学学报, 2009, 25 (1), 30.
18 Poghosyan A. H. ; Arsenyan L. H. ; Shahinyan A. A. J. Surfact. Deterg. 2015, 18, 755.
19 Poghosyan A. H. ; Arsenyan L. H. ; Shahinyan A. A. Colloid Polym. Sci. 2014, 292, 3147.
20 Hu S. Q. ; Ji X. J. ; Fan Z. Y. ; Zhang T. T. ; Sun S. Q. Acta Phys. -Chim. Sin. 2015, 31 (1), 83.
20 胡松青; 纪贤晶; 范忠钰; 张田; 孙霜青. 物理化学学报, 2015, 31 (1), 83.
21 You H. ; Zhao B. ; Wang Z. W. Acta Phys. -Chim. Sin. 2009, 25 (1), 67.
21 游慧; 赵波; 王正武. 物理化学学报, 2009, 25 (1), 67.
22 Hughes Z. E. ; Walsha T. R. RSC Advances 2015, 5, 49933.
23 Cao X. L. ; He X. J. ; Zhao G. Q. ; Song X. W. ; Wang Q. W. ; Cao Y. B. ; Li Y. Chem. J. Chin. Univ. 2007, 28 (11), 2106.
23 曹绪龙; 何秀娟; 赵国庆; 宋新旺; 王其伟; 曹嫣镔; 李英. 高等化学学报, 2007, 28 (11), 2106.
24 Ding W. ; Liu G. Y. ; Yu T. ; Qu G. M. ; Cheng J. C. ; Wu J. Z. Acta Phys. -Chim. Sin. 2010, 26 (3), 727.
24 丁伟; 刘国宇; 于涛; 曲广淼; 程杰成; 吴军政. 物理化学学报, 2010, 26 (3), 727.
25 Liu Z. Y. ; Wei N. ; Wang C. ; Zhou H. ; Zhang L. ; Liao Q. ; Zhang L. AIP Advances 2015, 5, 117203.
26 He X. B. ; Guvench O. Jr. ; MacKerell A. D. ; Klein M. L. J. Phys. Chem. B 2010, 114, 9787.
27 Kabra V. S. ; Gaikar V. G. J. Mol. Liq. 2008, 142, 143.
28 Yuan S. L. ; Chen Y. J. ; Xu G. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2006, 288, 108.
29 Pang J. Y. ; Xu G. Y. Chem. Phys. Lett. 2012, 537, 118.
30 Chen Y. J. ; Xu G. Y. ; Yuan S. L. ; Sun H. Y. Colloids Surf. 2006, 273, 174.
31 Pang J. Y. ; Wang Y. J. ; Xu G. Y. ; Han T. T. ; Lv X. ; Zhang J. J. Phys. Chem. B 2011, 115, 2518.
32 Zhao T. T. ; Xu G. Y. ; Yuan S. L. ; Chen Y. J. ; Yan H. J. Phys. Chem. B 2010, 114, 5025.
33 Chen Y. J. ; Xu G. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2013, 424, 26.
34 Granet R. ; Piekarski S. Colloids Surf. 1988, 33, 321.
35 Gu T. R. ; Sj?blom J. Acta Chemica Scandinavica 1991, 45, 762.
36 Fekarcha L. ; Tazerouti A. J. Surf. Deterg. 2012, 15, 419.
[1] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1905-1914.
[2] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1354-1365.
[3] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1140-1148.
[4] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2472-2479.
[5] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2173-2183.
[6] LIU Teng, WANG Hai-Yang, XU Gui-Ying. Aggregation Behavior of PEO-PPO Block Polyethers and Their Application as a Drug Carrier[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1072-1086.
[7] WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1282-1288.
[8] LIU Zi-Yu, LIAO Qi, JIN Zhi-Qiang, ZHANG Lei, ZHANG Lu. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1168-1174.
[9] XIE Wei, XU Ze-Ren, WANG Ming, XU Si-Chuan. Molecular Dynamics Simulation for Levo-Benzedrine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 907-920.
[10] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 691-700.
[11] MENG Xian-Mei, ZHANG Shao-Long, ZHANG Qing-Gang . Effect of the Allosteric Inhibitor Efavirenz on HIV-1 Reverse Transcriptase by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 436-444.
[12] SHEN Hong-Chen, DING Ji-Yong, LI Li, LIU Fu-Feng. Effect of Y220C Mutant on the Conformational Transition of p53C Probed by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2620-2627.
[13] FAN Ya-Xun, HAN Yu-Chun, WANG Yi-Lin. Effects of Molecular Structures on Aggregation Behavior of Gemini Surfactants in Aqueous Solutions[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 214-226.
[14] ZHANG Qiang, CHENG Cheng, ZHANG Xia, ZHAO Dong-Xia. Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1461-1467.
[15] Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1045-1053.