Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1171-1180    DOI: 10.3866/PKU.WHXB201704071
ARTICLE     
Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors
Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN*()
Download: HTML     PDF(2121KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Accurate prediction of the energy levels (i.e. ionization potential and electronic affinity) of organic semiconductors is essential for understanding related mechanisms and for designing novel organic semiconductor materials. From a theoretical point of view, a major challenge arises from the lack of a reliable method that can provide not only qualitative but also quantitative predictions at an acceptable computational cost. In this study, we demonstrate an approach, combining the polarizable continuum model (PCM) and the optimally tuned range-separated (RS) functional method, which provides the ionization potentials (IPs), electron affinities (EAs), and polarization energies of a series of molecular semiconductors in good agreement with available experimental values. Importantly, this tuning method can enforce the negative frontier molecular orbital energies (-εHOMO, -εLUMO) that are very close to the corresponding IPs and EAs. The success of this tuning method can be further attributed to the fact that the tuned RS functional can provide a good balance for the description of electronic localization and delocalization effects according to various molecular systems or the same molecule in different phases (i.e. gas and solid). In comparison, other conventional functionals cannot give reliable predictions because the functionals themselves include too low (i.e. PBE) or too high (i.e. M06HF and non-tuned RS functionals) HF%. Therefore, we believe that this PCM-tuned approach represents an easily applicable and computationally efficient theoretical tool to study the energy levels of more complex organic electronic materials.



Key wordsOrganic semiconductor      Density functional theory      Optimally-tuned      Range-separated (RS) functional      Energy level     
Received: 27 December 2016      Published: 07 April 2017
MSC2000:  O641  
Fund:  The project was supported by the National Natural Science Foundation of China(21603074);The project was supported by the National Natural Science Foundation of China(11474096);Shanghai-International Scientific Cooperation Fund, China(16520721200)
Corresponding Authors: Hai-Tao SUN     E-mail: htsun@phy.ecnu.edu.cn
Cite this article:

Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704071     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1171

Fig 1 ketch of frontier molecular orbitals(HOMO and LUMO) and ionization potential (IP) andelectron affinity (EA) of organic semiconductormolecules in gas phase (left) and solid state (right) Egrepresents the fundamental gap.
Fig 2 13 organic semiconductor molecules calculated in this work
Molecule V/nm3 α/nm3 ε ωg/bohr?1 ωs/bohr?1
1TPD0.670.0703.370.1730.048
2NPD0.730.0793.440.1810.042
3YCP0.590.0593.180.1900.045
4Alq30.510.0493.010.1910.055
5mCP0.500.0503.190.1940.048
6BCP0.450.0453.160.1890.060
7Bphen0.410.0413.180.1980.063
8DPNTCI0.460.0453.110.2100.067
9TCNQ0.240.0304.100.2400.059
10MPMP0.600.0512.650.2030.063
11NTCDA0.260.0242.900.2500.077
12mPTCDI0.440.0544.150.2010.044
13PTCDA0.390.0484.120.2030.048
Table 1 Calculated volume of molecules V, staticmolecular polarizability α and dielectric constant ε atthe B3LYP/6-31G(d) level, and optimally-tuned ω in gasphase (g) and solid state (s)
Molecule ?εHOMOg IPVg ?εLUMOg EAVg ?εHOMOS IPVS ?εLUMOS EAVS IPUPS EAIPES
1TPD6.046.06?0.47?0.454.844.800.850.855.1050
2NPD6.136.10?0.20?0.274.804.811.271.275.20511.5252
3YCP6.736.73?0.71?0.755.295.300.760.785.6151
4Alq36.746.770.250.265.495.441.591.555.57501.9652
5mCP7.037.05?0.65?0.655.565.550.790.825.9851
6BCP7.347.34?0.06?0.066.086.131.201.246.30531.5654
7Bphen7.607.610.070.076.246.281.351.396.4055, 56
8DPNTCI8.588.581.861.867.027.052.912.937.4050
9TCNQ8.928.903.403.407.297.284.134.127.40574.2058
10MPMP6.436.47?1.70?1.655.045.08?0.21?0.185.40590.0559
11NTCDA9.539.522.362.347.877.883.263.307.97544.0254
2mPTCDI7.457.422.152.176.016.023.193.196.60603.9560
13PTCDA7.927.922.572.566.386.363.453.496.60613.9061
MAD0.280.270.410.40
Table 2 Calculated orbital energies (?εHOMOS, ?εLUMOS, ?εHOMOg, ?εLUMOg), vertical ionization energies (IPVS and IPVg) andvertical electron affinities (EAVS and EAVg) in solid state (s) and gas phase (g) at the LC-ωPBE*/6-31G(d) level andthe experimental IPUPS and EAIPES values measured by UPS and IPES
?εHOMOS vs IPUPS ?εLUMOS vs EAIPES IPVS vs IPUPS EAVS vs EAIPES
PBE1.090.430.320.41
B3LYP0.410.270.130.51
BMK0.350.750.230.64
M062X0.840.900.450.58
M06HF2.441.931.000.66
CAM-B3LYP0.841.270.400.70
LC-ωPBE2.082.040.620.68
ωB97XD1.441.780.480.72
HF1.573.420.751.46
LC-ωPBE*0.28(1.15)b0.41(1.55)b0.27(1.15)b0.40(1.55)b
Table 3 Mean absolute deviation (MAD) of the calculated orbital energies (?εHOMOS and ?εLUMOS), vertical ionizationenergies (IPVS) and vertical electron affinities (EAVS) in solid state using various density functionals compared to the experimental valuesa
Fig 3 Correlation of calculated orbital energies?εHOMOS and vertical ionization energies IPVS usingLC-ωPBE*/6-31G(d) with experimental ionizationenergies IPUPS of 13 molecules in the solid state color online
Fig 4 Mean absolute deviation (MAD) of thecalculated orbital energies (?εHOMOS and ?εLUMOS), vertical ionization energies (IPVS) and electronaffinities (EAVS) in the solid state using various densityfunctionals compared to the availableexperimental values
MoleculePBEB3LYPBMKM062XM06HFCAM-B3LYPLC-ωPBωB97XDHFLC-ωPBE*
1TPD0.700.720.710.710.690.720.720.720.821.26
(?0.10)(?0.09)(?0.11)(?0.12)(?0.15)(?0.11)(?0.12)(?0.11)(?0.12)(1.20)
2NPD0.690.700.700.700.680.720.720.710.801.29
(?0.10)(?0.10)(?0.12)(?0.12)(?0.15)(?0.11)(?0.12)(?0.12)(?0.13)(1.33)
3YCP0.770.790.770.770.750.790.780.770.781.43
(?0.08)(?0.06)(?0.08)(?0.08)(?0.12)(?0.07)(?0.09)(?0.08)(?0.09)(1.44)
4Alq30.750.740.710.710.670.720.690.700.691.33
(?0.15)(?0.16)(?0.18)(?0.19)(?0.23)(?0.17)(?0.20)(?0.18)(?0.21)(1.25)
5mCP0.870.850.830.840.830.840.850.830.841.50
(?0.05)(?0.05)(?0.07)(?0.06)(?0.09)(?0.05)(?0.07)(?0.07)(?0.07)(1.47)
6BCP0.820.850.850.850.830.870.870.860.911.21
(?0.22)(?0.14)(?0.15)(?0.16)(?0.19)(?0.15)(?0.16)(?0.16)(?0.17)(1.26)
7Bphen0.850.900.900.910.900.920.930.910.961.33
(?0.23)(?0.11)(?0.13)(?0.13)(?0.16)(?0.12)(?0.14)(?0.13)(?0.15)(1.36)
8DPNTCI0.810.870.931.021.031.061.061.031.091.53
(?0.10)(0.00)(?0.01)(?0.01)(?0.04)(0.01)(0.00)(0.00)(0.02)(1.56)
9TCNQ1.501.521.531.511.491.531.541.521.591.62
(0.25)(0.26)(0.26)(0.25)(0.23)(0.26)(0.26)(0.26)(0.27)(1.63)
10MPMP0.720.730.730.710.700.720.720.720.731.39
(?0.09)(?0.09)(?0.10)(?0.10)(?0.12)(?0.09)(?0.11)(?0.10)(?0.10)(1.39)
11NTCDA1.201.341.351.341.331.121.341.121.361.64
(0.06)(0.21)(0.22)(0.21)(0.20)(0.21)(0.21)(0.20)(0.26)(1.66)
12mPTCDI1.141.181.181.171.151.181.181.171.261.40
(0.07)(0.10)(0.09)(0.09)(0.06)(0.10)(0.09)(0.09)(0.13)(1.44)
13PTCDA1.321.351.361.351.341.361.351.351.421.56
(0.22)(0.25)(0.26)(0.24)(0.23)(0.26)(0.24)(0.24)(0.29)(1.54)
Table 4 Calculated polarization energies (P+), defined as energy differences between the calculated IPVg in gas phase andIPVS in the solid state, see equation (6)
1 Forrest S. R. ; Thompson M. E. Chem. Rev. 2007, 107, 923.
2 Heeger A. J. Angew. Chem. 2001, 40, 2591.
3 Klauk, H. (Ed.) Organic Electronics, Materials, Manufacturing and Applications; Wiley-WCH, Weinheim, 2006; pp 411-418.
4 Müllen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: 1998; pp 235-275.
5 Brédas J. L. ; Calbert J. P. ; da Silva Filho D. A. ; Cornil J. Pro. Natl. Acad. Sci. U. S. A. 2002, 99, 5804.
6 Pope, M.; Swenberg, C. E.; Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford Univ. Press: New York, 1999; Chapter 2.
7 Tang C. W. ; VanSlyke S. A. Appl. Phys. Lett. 1987, 51, 913.
8 Bredas J. L Mater. Horiz. 2014, 1, 17.
9 Kahn A. Mater. Horiz. 2016, 3, 7.
10 Krause S. ; Casu M. B. ; Sch?ll A. ; Umbach E. New J. Phys. 2008, 10, 085001.
11 Ryno S. M. ; Risko C. ; Bredas J. L. J. Am. Chem. Soc. 2014, 136, 6421.
12 Sharifzadeh S. ; Biller A. ; Kronik L. ; Neaton J. B. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 125307.
13 Heimel G. ; Salzmann I. ; Duhm S. ; Koch N. Chem. Mater. 2011, 23, 359.
14 Hedin L. Phys. Rev. 1965, 139, A796.
15 Hybertsen M. S. ; Louie S. G. Phys. Rev. B 1986, 34, 5390.
16 Chen L. ; Zhu L. ; Shuai Z. J. Phys. Chem. A 2006, 110, 13349.
17 Fabiano E. ; Sala F. D. ; Cingolani R. ; Weimer M. ; Gorling A. J. Phys. Chem. A 2005, 109, 3078.
18 Hammond J. R. ; Kowalski K. J. Chem. Phys. 2009, 130, 194108.
19 Kohn W. ; Sham L.J. Phys. Rev. 1965, 140
20 Seidl A. ; G?rling A. ; Vogl P. ; Majewski J. A. ; Levy M. Phys. Rev. B 1996, 53, 3764.
21 Cohen A. J. ; Mori-Sánchez P. ; Yang W. Science 2008, 321, 792.
22 K?rzd?rfer T. ; Brédas J. L. Acc. Chem. Res. 2014, 47, 3284.
23 Zheng X. ; Li C. ; Zhang D. ; Yang W. Sci. China Chem. 2015, 58, 1825.
24 Mori-Sánchez P. ; Cohen A. J. ; Yang W. Phys. Rev. Lett. 2008, 100, 146401.
25 Perdew J. P. ; Zunger A. Phys. Rev. B 1981, 23, 5048.
26 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
27 Becke A. D. J. Chem. Phys. 1993, 98, 5648.
28 Lee C. ; Yang W. ; Parr R. G. Phys. Rev. B 1988, 37, 785.
29 Refaely-Abramson S. ; Sharifzadeh S. ; Jain M. ; Baer R. ; Neaton J. B. ; Kronik L. Phys. Rev. B 2013, 88, 1336.
30 Baer R. ; Livshits E. ; Salzner U. Annu. Rev. Phys. Chem. 2010, 61, 85.
31 Kleinman L. Phys. Rev. B 1997, 56, 12042.
32 Stein T. ; Kronik L. ; Baer R. J. Chem. Phys. 2009, 131, 244119.
33 Kronik L. ; Stein T. ; Refaely-Abramson S. ; Baer R. J. Chem. Theory Comput. 2012, 8, 1515.
34 Mennucci B. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 386.
35 Tomasi J. ; Mennucci B. ; Cammi R. Chem. Rev. 2005, 105, 2999.
36 Sun H. ; Hu Z. ; Zhong C. ; Zhang S. ; Sun Z. J. Phys. Chem. C 2016, 120, 8048.
37 Sun H. ; Ryno S. ; Zhong C. ; Ravva M. K. ; Sun Z. ; K?rzd?rfer T. ; Brédas J. L. J. Chem. Theory Comput. 2016, 12, 2906.
38 Boese A. D. ; Martin J. M. J. Chem. Phys. 2004, 121, 3405.
39 Zhao Y. ; Truhlar D. G. Theor. Chem. Acc. 2008, 120, 215.
40 Zhao Y. ; Truhlar D. G. J. Phys. Chem. A 2006, 110, 13126.
41 Sun H. ; Autschbach J. J. Chem. Theory Comput. 2014, 10, 1035.
42 K?rzd?rfer T. ; Sears J. S. ; Sutton C. ; Brédas J. L. J. Chem. Phys. 2011, 135, 204107.
43 Stein T. ; Kronik L. ; Baer R. J. Am. Chem. Soc. 2009, 131, 2818.
44 Ashcroft N. W. ; Mermin N. D. Solid State Physics; Holt, Rinehart and Winston, New York 1978, 9, 33.
45 Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
46 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.
47 Yanai T. ; Tew D. P. ; Handy N. C. Chem. Phys. Lett. 2004, 393, 51.
48 Vydrov O. A. ; Scuseria G. E. J. Chem. Phys. 2006, 125, 234109.
49 Chai J. D. ; Head-Gordon M. J. Chem. Phys. 2008, 128, 084106.
50 Sugiyama K. ; Yoshimura D. ; Miyamae T. ; Miyazaki T. J. Appl. Phys. 1998, 83, 4928.
51 Dandrade B. ; Datta S. ; Forrest S. ; Djurovich P. ; Polikarpov E. ; Thompson M. Org. Electron. 2005, 6, 11.
52 Hill I. G. ; Kahn A. ; Cornil J. ; dos Santos D. A. ; Brédas J. L. Chem. Phys. Lett. 2000, 317, 444.
53 Tang J. X. ; Zhou Y. C. ; Liu Z. T. ; Lee C. S. ; Lee S. T. Appl. Phys. Lett. 2008, 93, 043512.
54 Chan C. K. ; Kim E. G. ; Brédas J. L. ; Kahn A. Adv. Funct. Mater. 2006, 16, 831.
55 Chan M. Y. ; Lai S. L. ; Lau K. M. ; Lee C. S. ; Lee S. T. Appl. Phys. Lett. 2006, 89, 163515.
56 Pfeiffer M. ; Forrest S. R. ; Leo K. ; Thompson M. E. Adv. Mater. 2002, 14, 1633.
57 Sato N. ; Seki K. ; Inokuchi H. J. Chem. Soc., Faraday Trans. 2 1981, 77, 1621.
58 Kanai K. ; Akaike K. ; Koyasu K. ; Sakai K. ; Nishi T. ; Kamizuru Y. ; Nishi T. ; Ouchi Y. ; Seki K. Appl. Phys. A. 2008, 95, 309.
59 Wang Y. ; Gao W. ; Braun S. ; Salaneck W. R. ; Amy F. ; Chan C. ; Kahn A. Appl. Phys. Lett. 2005, 87, 193501.
60 Zahn D. R. T. ; Gavrila G. N. ; Gorgoi M. Chem. Phys. 2006, 325, 99.
61 Schwenn P. E. ; Burn P. L. ; Powell B. J. Org. Electron. 2011, 12, 394.
62 Tian X. ; Sun H. ; Zhang Q. ; Chihaya A. Chin. Chem. Lett. 2016, 27, 1445.
63 Sun H. ; Zhong C. ; Sun Z. Acta Phys. -Chim. Sin. 2016, 32, 2197.
63 孙海涛; 钟成; 孙真荣. 物理化学学报, 2016, 32, 2197.
64 Hu Z. ; Zhou B. ; Sun Z. ; Sun H. J. Comput. Chem. 2017, 38, 569.
[1] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[2] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[4] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[5] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[6] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[7] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[8] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[9] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[11] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[12] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 548-553.
[14] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[15] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.