Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1171-1180    DOI: 10.3866/PKU.WHXB201704071
Article     
Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors
GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao
State Key Laboratory of Precision Spectroscopy, and School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
Download:   PDF(1892KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Accurate prediction of the energy levels (i.e. ionization potential and electronic affinity) of organic semiconductors is essential for understanding related mechanisms and for designing novel organic semiconductor materials. From a theoretical point of view, a major challenge arises from the lack of a reliable method that can provide not only qualitative but also quantitative predictions at an acceptable computational cost. In this study, we demonstrate an approach, combining the polarizable continuum model (PCM) and the optimally tuned range-separated (RS) functional method, which provides the ionization potentials (IPs), electron affinities (EAs), and polarization energies of a series of molecular semiconductors in good agreement with available experimental values. Importantly, this tuning method can enforce the negative frontier molecular orbital energies (-εHOMO, -εLUMO) that are very close to the corresponding IPs and EAs. The success of this tuning method can be further attributed to the fact that the tuned RS functional can provide a good balance for the description of electronic localization and delocalization effects according to various molecular systems or the same molecule in different phases (i.e. gas and solid). In comparison, other conventional functionals cannot give reliable predictions because the functionals themselves include too low (i.e. PBE) or too high (i.e. M06HF and non-tuned RS functionals) HF%. Therefore, we believe that this PCM-tuned approach represents an easily applicable and computationally efficient theoretical tool to study the energy levels of more complex organic electronic materials.



Key wordsOrganic semiconductor      Density functional theory      Optimally-tuned      Range-separated (RS) functional      Energy level     
Received: 27 December 2016      Published: 07 April 2017
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21603074, 11474096) and Shanghai-International Scientific Cooperation Fund, China (16520721200).

Corresponding Authors: SUN Hai-Tao     E-mail: htsun@phy.ecnu.edu.cn
Cite this article:

GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201704071     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I6/1171

(1) Forrest, S. R.; Thompson, M. E. Chem. Rev. 2007, 107, 923. doi: 10.1021/cr0501590
(2) Heeger, A. J. Angew. Chem. 2001, 40, 2591. doi: 10.1002/1521-3773(20010716)40:14<2591::AIDANIE2591> 3.0.CO;2-0
(3) Klauk, H. (Ed.) Organic Electronics, Materials, Manufacturing and Applications; Wiley-WCH, Weinheim, 2006; pp 411-418.
(4) Müllen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: 1998; pp 235-275.
(5) Brédas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Pro. Natl. Acad. Sci. U. S. A. 2002, 99, 5804. doi: 10.1073/pnas.092143399
(6) Pope, M.; Swenberg, C. E.; Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford Univ. Press: New York, 1999; Chapter 2.
(7) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799
(8) Bredas, J. L. Mater. Horiz. 2014, 1, 17. doi: 10.1039/c3mh00098b
(9) Kahn, A. Mater. Horiz. 2016, 3, 7. doi: 10.1039/c5mh00160a
(10) Krause, S.; Casu, M. B.; Schöll, A.; Umbach, E. New J. Phys. 2008, 10, 085001. doi: 10.1088/1367-2630/10/8/085001
(11) Ryno, S. M.; Risko, C.; Bredas, J. L. J. Am. Chem. Soc. 2014, 136, 6421. doi: 10.1021/ja501725s
(12) Sharifzadeh, S.; Biller, A.; Kronik, L.; Neaton, J. B. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 125307. doi: 10.1103/PhysRevB.85.125307
(13) Heimel, G.; Salzmann, I.; Duhm, S.; Koch, N. Chem. Mater. 2011, 23, 359. doi: 10.1021/cm1021257
(14) Hedin, L. Phys. Rev. 1965, 139, A796. doi: 10.1103/PhysRev.139.A796
(15) Hybertsen, M. S.; Louie, S. G. Phys. Rev. B 1986, 34, 5390. doi: 10.1103/PhysRevB.34.5390
(16) Chen, L.; Zhu, L.; Shuai, Z. J. Phys. Chem. A 2006, 110, 13349. doi: 10.1021/jp0652998
(17) Fabiano, E.; Sala, F. D.; Cingolani, R.; Weimer, M.; Gorling, A. J. Phys. Chem. A 2005, 109, 3078. doi: 10.1021/jp044974f
(18) Hammond, J. R.; Kowalski, K. J. Chem. Phys. 2009, 130, 194108. doi: 10.1063/1.3134744
(19) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133
(20) Seidl, A.; Görling, A.; Vogl, P.; Majewski, J. A.; Levy, M. Phys. Rev. B 1996, 53, 3764. doi: 10.1103/PhysRevB.53.3764
(21) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Science 2008, 321, 792. doi: 10.1126/science.1158722
(22) Körzdörfer, T.; Brédas, J. L. Acc. Chem. Res. 2014, 47, 3284. doi: 10.1021/ar500021t
(23) Zheng, X.; Li, C.; Zhang, D.; Yang, W. Sci. China Chem. 2015, 58, 1825. doi: 10.1007/s11426-015-5501-z
(24) Mori- Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401. doi: 10.1103/PhysRevLett.100.146401
(25) Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048. doi: 10.1103/PhysRevB.23.5048
(26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(28) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(29) Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L. Phys. Rev. B 2013, 88, 1336. doi: 10.1103/PhysRevB.88.081204
(30) Baer, R.; Livshits, E.; Salzner, U. Annu. Rev. Phys. Chem. 2010, 61, 85. doi: 10.1146/annurev.physchem.012809.103321
(31) Kleinman, L. Phys. Rev. B 1997, 56, 12042. doi: 10.1103/PhysRevB.56.12042
(32) Stein, T.; Kronik, L.; Baer, R. J. Chem. Phys. 2009, 131, 244119. doi: 10.1063/1.3269029
(33) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. J. Chem. Theory Comput. 2012, 8, 1515. doi: 10.1021/ct2009363
(34) Mennucci, B. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 386. doi: 10.1002/wcms.1086
(35) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
(36) Sun, H.; Hu, Z.; Zhong, C.; Zhang, S.; Sun, Z. J. Phys. Chem. C 2016, 120, 8048. doi: 10.1021/acs.jpcc.6b01975
(37) Sun, H.; Ryno, S.; Zhong, C.; Ravva, M. K.; Sun, Z.; Körzdörfer, T.; Brédas, J. L. J. Chem. Theory Comput. 2016, 12, 2906. doi: 10.1021/acs.jctc.6b00225
(38) Boese, A. D.; Martin, J. M. J. Chem. Phys. 2004, 121, 3405. doi: 10.1063/1.1774975
(39) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
(40) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. doi: 10.1021/jp066479k
(41) Sun, H.; Autschbach, J. J. Chem. Theory Comput. 2014, 10, 1035. doi: 10.1021/ct4009975
(42) Körzdörfer, T.; Sears, J. S.; Sutton, C.; Brédas, J. L. J. Chem. Phys. 2011, 135, 204107. doi: 10.1063/1.3663856
(43) Stein, T.; Kronik, L.; Baer, R. J. Am. Chem. Soc. 2009, 131, 2818. doi: 10.1021/ja8087482
(44) Ashcroft, N. W.; Mermin, N. D. Solid State Physics;Holt, Rinehart and Winston, New York, 1978, 9, 33. doi: 10.1002/piuz.19780090109
(45) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
(46) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.
(47) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011
(48) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. doi: 10.1063/1.2409292
(49) Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106. doi: 10.1063/1.2834918
(50) Sugiyama, K.; Yoshimura, D.; Miyamae, T.; Miyazaki, T. J. Appl. Phys. 1998, 83, 4928. doi: 10.1063/1.367309
(51) Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M. Org. Electron. 2005, 6, 11. doi: 10.1016/j.orgel.2005.01.002
(52) Hill, I. G.; Kahn, A.; Cornil, J.; dos Santos, D. A.; Brédas, J. L. Chem. Phys. Lett. 2000, 317, 444. doi: 10.1016/s0009-2614(99)01384-6
(53) Tang, J. X.; Zhou, Y. C.; Liu, Z. T.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2008, 93, 043512. doi: 10.1063/1.2966155
(54) Chan, C. K.; Kim, E. G.; Brédas, J. L.; Kahn, A. Adv. Funct. Mater. 2006, 16, 831. doi: 10.1002/adfm.200500402
(55) Chan, M. Y.; Lai, S. L.; Lau, K. M.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2006, 89, 163515. doi: 10.1063/1.2362974
(56) Pfeiffer, M.; Forrest, S. R.; Leo, K.; Thompson, M. E. Adv. Mater. 2002, 14, 1633. doi: 10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
(57) Sato, N.; Seki, K.; Inokuchi, H. J. Chem. Soc., Faraday Trans. 2 1981, 77, 1621. doi: 10.1039/f29817701621
(58) Kanai, K.; Akaike, K.; Koyasu, K.; Sakai, K.; Nishi, T.; Kamizuru, Y.; Nishi, T.; Ouchi, Y.; Seki, K. Appl. Phys. A 2008, 95, 309. doi: 10.1007/s00339-008-5021-1
(59) Wang, Y.; Gao, W.; Braun, S.; Salaneck, W. R.; Amy, F.; Chan, C.; Kahn, A. Appl. Phys. Lett. 2005, 87, 193501. doi: 10.1063/1.2117623
(60) Zahn, D. R. T.; Gavrila, G. N.; Gorgoi, M. Chem. Phys. 2006, 325, 99. doi: 10.1016/j.chemphys.2006.02.003
(61) Schwenn, P. E.; Burn, P. L.; Powell, B. J. Org. Electron. 2011, 12, 394. doi: 10.1016/j.orgel.2010.11.025
(62) Tian, X.; Sun, H.; Zhang, Q.; Chihaya, A. Chin. Chem. Lett. 2016, 27, 1445. doi: 10.1016/j.cclet.2016.07.017
(63) Sun, H.; Zhong, C.; Sun, Z. Acta Phys. -Chim. Sin. 2016, 32, 2197. [孙海涛, 钟成, 孙真荣. 物理化学学报, 2016, 32, 2197.] doi: 10.3866/PKU.WHXB201605301
(64) Hu, Z.; Zhou, B.; Sun, Z.; Sun, H. J. Comput. Chem. 2017, 38, 569. doi: 10.1002/jcc.24736

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[8] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[9] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[10] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[11] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.
[14] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2219-2226.
[15] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1978-1988.