Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (7): 1462-1473    DOI: 10.3866/PKU.WHXB201704103
ARTICLE     
Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3
Xue-Hui HUANG*(),Xiao-Hui SHANG,Peng-Ju NIU
Download: HTML     PDF(2401KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Mesoporous SBA-15 with mesopore diameter up to 10.1 nm was prepared by a hydrothermal method, and was further functionalized to obtain different surface properties. Thus-prepared SBA-15 was employed as a template to synthesize rhombohedrally crystallized mesoporous La0.8Sr0.2CoO3 perovskite via a nanocasting method. The surface properties of the SBA-15 were adjusted by treatment with concentrated hydrochloric acid, trimethylchlorosilane (TMCS), and 3-aminopropyltriethoxysilane (APTES). A series of characterization techniques verified that all the synthesized templates possessed ordered two-dimensional hexagonal mesoporous structure, and the surface was successfully modified with methyl and amino groups. The mesoporous perovskite structure was formed in the samples and the surface properties of SBA-15 significantly influenced the structure and properties of La0.8Sr0.2CoO3 perovskite oxides. Wide-angle X-ray diffraction patterns suggested that the modified silica templates were conducive to the formation of pure perovskite frameworks with good crystallinity. The catalysts also possessed mesoporous structure, as confirmed by small-angle XRD patterns, high-resolution transmission electron microscopy images, and nitrogen adsorption analysis. Moreover, the La0.8Sr0.2CoO3 materials synthesized using surface-functionalized templates exhibited relatively higher catalytic activity and stability in CO oxidation. Complete CO conversion could be achieved at 140℃ using the thus-prepared La0.8Sr0.2CoO3 materials, and no significant loss in catalytic activity was observed after 100 h of on-stream reaction experiments. X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption experiments revealed that the existence of Co4+, Sr enrichment in the perovskite structure, and high content of adsorbed oxygen species play a critical role in the enhanced catalytic activity of the catalysts. We also proposed the possible reasons for the effect of surface properties of the silica templates on the structure and properties of the La0.8Sr0.2CoO3 nanomaterials.



Key wordsSBA-15      Surface modification      Template      Mesoporous La0.8Sr0.2CoO3      Low-temperature CO oxidation     
Received: 22 December 2016      Published: 10 April 2017
MSC2000:  O643  
  TQ138.1+2  
Corresponding Authors: Xue-Hui HUANG     E-mail: huangxh@whut.edu.cn
Cite this article:

Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3. Acta Physico-Chimica Sinca, 2017, 33(7): 1462-1473.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704103     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I7/1462

 
 
 
Sample SBET/(m2·g-1) a Dp/nm b VP/(cm3·g-1) c
SBA-15 802 10.1 1.17
CH3-SBA-15-OH 731 9.56 1.13
CH 3-SBA-15-OH/NH 2 350 7.8 0.62
LSC-1 148 7.1 0.24
LSC-2 123 7.2 0.27
LSC-3 102 7.4 0.25
 
 
 
 
 
 
SamplesEb/(eV)Atomic ratioCO oxidation activity
Co 2p3/2O 1sCo/LaCo/SrCo4+/Co3+Srlat/SrsurOads/OlatT50%/℃T90%/℃
LSC-1780.3529.2 (8.8%)1.24.61.430.872.4134156
530.3 (21%)
531.8 (50.2%)
532.6 (19%)
LSC-2780.7529.2 (11%)1.44.81.681.173.0127138
530.3 (33.4%)
531.3 (35.5%)
532.3 (20.1%)
LSC-3781.0529.4 (10%)1.85.41.991.523.7110120
530.5 (37.2%)
531.4 (32.2%)
532.2 (20.6%)
 
 
Sample H2 consumption/(mmol.g -1) Amount of oxygen desorbed/(mmol·g-1)
< 450 ℃ ≥ 450 ℃ Total α-O α'-O β-O Total
LSC-1 1.8 3.5 5.3 0.12 0.09 1.55 1.76
LSC-2 1.9 4.0 5.9 0.15 0.17 1.57 1.89
LSC-3 2.1 4.1 6.2 0.20 0.23 1.62 2.05
 
 
1 Qi J. ; Chen J. ; Li G. D. ; Li S. X. ; Gao Y. ; Tang Z. Y. EnergyEnviron. Sci. 2012, 5, 8937.
2 Li X. Z. ; Ni C. Y. ; Lu X. W. ; Zuo S. X. ; Liu W. J. ; Yao C. Catal. Sci. Technol. 2016, 6, 545.
3 Liang Q. ; Zhao Z. ; Liu J. ; Wei Y. C. ; Jiang G. Y. ; Duan A. J. Acta Phys. -Chim. Sin. 2014, 30, 129.
3 梁倩; 赵震; 刘坚; 韦岳长; 姜桂元; 段爱军. 物理化学学报, 2014, 30, 129.
4 Suh M. J. ; Park Y. K. ; Ihm S. K. Catal. Today 2016, 265, 210.
5 Li X. W. ; Dai H. X. ; Deng J. G. ; Liu Y. X. ; Zhao Z. X. ; Wang Y. ; Yang H. G. ; Au C. T. Appl. Catal. A-Gen. 2013, 458, 11.
6 Pena M. A. ; Fierro J. L. G. Chem. Rev. 2001, 101, 1981.
7 Einaga H. ; Nasu Y. ; Oda M. ; Saito H. Chem. Eng. J. 2016, 283, 97.
8 Seyfi B. ; Baghalha M. ; Kazemian H. Chem. Eng. J. 2009, 148, 306.
9 Huang X. H. ; Niu P. J. ; Shang X. H. Chin. J.Catal. 2016, 37, 1431.
10 Ding Q. ; Xian H. ; Tan Y. S. ; Tsubaki N. ; Li X. G. Catal. Sci. Technol. 2013, 3, 1493.
11 Wang N. ; Yu X. P. ; Wang Y. ; Chu W. ; Liu M. Catal. Today 2013, 212, 98.
12 Alifanti M. ; Florea M. ; P rvulescu V. I. Appl. Catal. B-Environ. 2007, 70, 400.
13 Kustov A. L. ; Tkachenko O. P. ; Kustov L. M. ; Romanovsky B. V. Environ. Int. 2011, 37, 1053.
14 Tian B. B. ; Liu X. Y. ; Yang H. F. ; Xie S. H. ; Yu C. Z. ; Tu B. ; Zhao D. Y. Adv. Mater. 2003, 15, 1370.
15 Arandiyan H. ; Dai H. X. ; Deng J. G. ; Liu Y. X. ; Bai B.Y. ; Wang Y. ; Li X. W. ; Xie S. H. ; Li J. H. J.Catal. 2013, 307, 327.
16 Nair M. M. ; Kleitz F. ; Kaliaguine S. Chin. J.Catal. 2016, 37, 32.
17 Wang Y. J. ; Ren J. W. ; Wang Y. Q. ; Zhang F. Y. ; Liu X. H. ; Guo Y. ; Lu G. Z. J. Phys. Chem. C. 2008, 112, 15293.
18 Wang Y. X. ; Cui X. Z. ; Li Y. S. ; Shu Z. ; Chen H. G. ; Shi J.L. Micropor. Mesopor. Mat. 2013, 176, 8.
19 Valdés-Solís T. ; Marbán G. ; Fuertes A. B. Chem. Mater. 2005, 17, 1919.
20 Liu A. M. ; Hidajat K. ; Kawi S. ; Zhao D.Y. Chem Commun 2000, 13, 1145.
21 Zhu K. K. ; Yue B. ; Zhou W. Z. ; He H. Chem. Commun. 2003, 1, 98.
22 Yue B. ; Tang H. L. ; Kong Z. P. ; Zhu K. K. ; Dickinson C. Chem. Phys. Lett. 2005, 407, 83.
23 Huang X. B. ; Yang M. ; Wang G. ; Zhang X.X. Micropor. Mesopor. Mat. 2011, 144, 171.
24 Zhao D. Y. ; Feng J. L. ; Huo Q. S. ; Melosh N. ; Fredrickson G. H. ; Chmelka B. F. ; Stucky G. D. Science 1998, 279, 548.
25 Zhu Y. H. ; Li H. ; Zheng Q. ; Xu J. Q. ; Li X. X. Langmuir 2012, 28, 7843.
26 Chen F. ; Liu S. W. ; Yu J. G. Phys. Chem. Chem. Phys. 2016, 18, 18161d.
27 Nomura A. ; Jones C. W. Ind. Eng. Chem. Res. 2015, 54, 263.
28 Nomura A. ; Jones C. W. ACS. Appl. Mater. Inter. 2013, 5, 5569.
29 Xu J. F. ; Liu J. ; Zhao Z. ; Xu C. M. ; Zheng J. X. ; Duan A. J. ; Jiang G.Y. J. Catal. 2011, 282, 1.
30 Glisenti A. ; Pacella M. ; Guiotto M. ; Natile M. M. ; Canu P. Appl. Catal. B-Environ. 2016, 180, 94.
31 Rousseau S. ; Loridant S. ; Delichere P. ; Boreave A. ; Deloume J. P. ; Vernoux P. Appl. Catal. B-Environ. 2009, 88, 438.
32 Wang L. ; Fang S. Q. ; Feng N. J. ; Wan H. ; Guan G. F. Chem. Eng. J. 2016, 293, 68.
33 Merino N. A. ; Barbero B.P. ; Eloy P. ; Cadus L.E. Appl. Surf. Sci. 2006, 253, 1489.
34 Ding J. C. ; Li H. Y. ; Cai Z. X. ; Wang X. X. ; Guo X. Sensor Actuat. B-Chem. 2016, 222, 517.
35 Ding J. J. ; Zhou Y. N. ; Sun Q.Yu. ; X. Q. ; Yang X. Q. ; Fu Z. W. Electrochimica Acta 2013, 87, 388.
36 Li X. Y. ; Zhang Z. P. ; Ma J. T. ; Zhu Z. Z. ; Meng Y. M. Acta Phys. -Chim. Sin. 1996, 12, 502.
36 李绪渊; 张自萍; 马建泰; 朱宗祯;孟益民. 物理化学学报, 1996, 12, 502.
37 Crumlin E. J. ; Mutoro E. ; Liu Z. ; Grass M. E. ; Biegalski M. D. ; e Yueh-Lin Lee ; Morgan D. ; Christen H. M. ; Bluhm H. ; Yang Shao-Horn Energ. Environ. Sci. 2012, 5, 6081.
38 Jung W. C. ; Tuller H.L. Energ. Environ. Sci. 2012, 5, 5370.
39 Li X. W. ; Dai H. X. ; Deng J. G. ; Liu Y. X. ; Xie S. H. ; Zhao Z. X. ; Wang Y. ; Guo G. S. ; Arandiyan H. Chem. Eng. J. 2013, 228, 965.
40 Deng H. B. ; Lin L. ; Liu S. J. Energ. Fuel 2010, 24, 4797.
41 Zhang J. Y. ; Tan D. D. ; Meng Q. J. ; Weng X. L. ; Wu Z. B. Appl. Catal. B-Environ. 2015, 172, 18.
42 Levasseur B. ; Kaliaguine S. Appl. Catal. B-Environ. 2009, 88, 305.
43 Liao, H. Preparation, Modification and Performance of Mesoporous Perovskite-type La-Co-O. M. S. Dissertation, Wuhan University of Technology, Wuhan, 2015.
[1] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[2] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1288-1296.
[3] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2045-2051.
[4] XIONG Wen-Hui, ZHANG Wen-Chao, YU Chun-Pei, SHEN Rui-Qi, CHENG Jia, YE Jia-Hai, QIN Zhi-Chun. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2093-2100.
[5] GUO Xing-Zhong, DING Li, YU Huan, SHAN Jia-Qi, YANG Hui. Construction and Preparation Mechanism of Hierarchically Porous SiO2 Monoliths[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1727-1733.
[6] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1604-1622.
[7] ZHAO Shu-Heng, LANG Lin, JIANG Jun-Fei, YIN Xiu-Li, WU Chuang-Zhi. Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 519-526.
[8] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2826-2840.
[9] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2841-2870.
[10] XUE Fei, HE Ji-Min, CHEN Wei-Miao, SONG Xian-Gen, CHENG Xian-Bo, DING Yun-Jie. Effect of the Calcination Temperature of the Support on the Performance of Rh-Mn-Li/SBA-15 Catalysts for CO Hydrogenation[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2769-2775.
[11] FENG Lei, HAO Jing-Cheng. Preparation and Property of Gold Nanoparticles from Muliple Self- Assembled Structures as Templates in LA/C14DMAO/H2O System[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 380-390.
[12] ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 793-799.
[13] HU Long-Xing, XU Dan-Dan, ZOU Lian-Pei, YUAN Hang, HU Xing. Heterogeneous Fenton Oxidation of Refractory Dye Rhodamine B in Aqueous Solution with Mesoporous Fe/SBA-15[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 771-782.
[14] GONG Jin-Hua, WANG Chen-Hui, BIAN Zi-Jun, YANG Li, HU Jun, LIU Hong-Lai. Asymmetric Polyimide Mixed Matrix Membranes with Porous Materials-Modified Surfaces for CO2/N2 and CO2/CH4 Separations[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1963-1970.
[15] CHEN Li, XUE Teng, ZHU Shu-Yan, WANG Yi-Meng. One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 181-188.