Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (6): 1085-1107    DOI: 10.3866/PKU.WHXB201704114
REVIEW     
New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4
Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI*()
Download: HTML     PDF(6417KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Lithium-ion batteries have been extensively studied due to their excellent electrochemical performance as an effective energy storage device for sustainable energy sources. The key to the development and application of this technology is the improvement of electrode materials. LiFePO4 has captured the attention of researchers both home and abroad as a potential cathode material for lithium-ion batteries because of its long cycle life, energy density, stable charge/discharge performance, good thermal stability, high safety, light weight and low toxicity. However, there are still some technical bottlenecks in the application of LiFePO4, such as relatively low conductivity, low diffusion coefficient of lithium ions, and low tap density. Moreover, the cycle performance, low-temperature characteristics, and rate performance are not ideal, restricting its application and development. In recent years, researchers have sought to solve these problems by improving the preparation process and attempting related modifications. In this paper, we have provided a systemic review of the structure, electrochemical reaction mechanism, preparation, and modification of LiFePO4. The main problems associated with LiFePO4 cathode materials and possible solutions are discussed. We have also investigated the future research direction and application prospect of LiFePO4 cathode materials.



Key wordsLiFePO4      Research progress      Electrochemical reaction mechanism      Preparation method      Modification     
Received: 11 December 2016      Published: 11 April 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51604132)
Corresponding Authors: Xue LI     E-mail: 438616074@qq.com
Cite this article:

Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704114     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I6/1085

Fig 1 Lattice structure of LiFePO4 12 Adapted from Elsevier Science Publisher.
Fig 2 Illustration of the shrinking-core model withthe juxtaposition of the two phases and the movementof the phase boundary20 Adapted from The Electrochemical Society Publisher.
Fig 3 chematic views of the interfacial region betweenLiFePO4 and FePO4 phases21 (a) hypothesis of a disordered LixFePO4 phase with a gradient of Licontent between FePO4 and LiFePO4 end members, which is not verifiedby HREELS measurements; (b) front phase evolution during delithiation, deduced from HREELS; (c) front phase evolution during lithiaton, deduced from HREELS. Adapted from American Chemical SocietyPublisher.
Fig 4 Schematic view of the 'domino-cascade'mechanism for the lithium deintercalation/intercalation mechanism in a LiFePO4 crystallite22 Adapted from Nature Publishing Group Publisher.
Fig 5 In situ XRD pattern of LiFePO4 under differentelectrochemical cycling conditions23 (A?C) Images show the second galvanostatic cycle at 5C, 10C, and20C, respectively. (D) Images show the evolution ofthe charge-relax experiment. Adapted from American Association forthe Advancement of Science Publisher.
Fig 6 ABF micrographs showing Li ions of partially delithiated LiFePO4 at every other row24 (a) Pristine material with the atomic structure of LiFePO4; (b) fully charged state with the atomic structure of FePO4; (c) half charged state showing the Li staging. Adapted from American Chemical Society Publisher.
Fig 7 Soft X-ray absorption spectra25 Adapted from American Chemical Society Publisher.
Fig 8 In situ time-resolved XRD test and schematic potential profiles for LixFePO4 26 Adapted from American Chemical Society Publisher.
Fig 9 Dual interface structure model with staging-Ⅱinterface for delithiation of LiFePO4 27 Adapted from Royal Society of Chemistry Publisher.
Fig 10 Favorable growth units of various faces and the calculated stabilization energy of combination of growth units40 1 kcal·mol?1 = 4.187 kJ·mol?1. Adapted from ESG Publisher.
Fig 11 FESEM images of LiFePO4(1.0) andLiFePO4(0.5), EDAX spectra showing presence ofC, O, P, and Fe59 Adapted from Springer Publisher.
Fig 12 TEM and the corresponding HRTEM imagesof the LiFePO4(1.0) and LiFePO4(0.5)59 Adapted from Springer Publisher.
Fig 13 Electrochemical performance of Mg?doped and undoped LiFePO4/C composite65 Adapted from Elsevier Science Publisher.
Doped ion Resolve resolution Electrochemical performance Reference
Na+ Preparation of Li1?xNaxFePO4 composites byhigh temperature solid phase method Li0.9Na0.1FePO4 composites exhibit the best electrochemical performance.Doping Na not only reduces the charge transfer resistance, but also increasesthe diffusion rate of lithium-ions. 85
Sn2+ Preparation of LiFe1?xSnxPO4 composites bysol-gel method The initial discharge specific capacity of LiFe0.97Sn0.03PO4 composite materialis 158 mAh·g?1 at 0.5C, the discharge capacity at higher 5C and 10Cmagnifications is 146 and 128 mAh·g?1, respectively. 86
Zn2+ Preparation of Zn-doped composites by usingwith FeSO4·7H2O, H2C2O4, Li2CO3 andNH4H2PO4 as the main raw materials At a current density of 0.3 mA·cm?2, the doping composite exhibits a higherspecific capacity of about 138 mAh·g?1 with higher coulombic efficiency. 87
Cu2+ Preparation of Li1+xFe1?yCuyPO4 composites by solid phase method at hightemperature The initial discharge specific capacity of Li1.05Fe0.997Cu0.003PO4 s 145mAh·g?1, the capacity retention rate is more than 95% during the cycle. 88
Mg2+ Preparation of Mg-doped LiFePO4/Ccomposites by carbide reduction withrheological phase The as-prepared LiFePO4 sample delivered a discharge capacity of 166mAh·g?1 at 0.1C and presented an excellent rate capacity of 148 mAh·g?1 anda high potential plateau of 3.32 V at 1C. Approximately 100% capacityretention was maintained after 150 cycles at 1C or 200 cycles at 10C. 89
Ni2+ Preparation of LiNixFe1?xPO4/C compositesby solid phase method at high temperature The LiNi0.02Fe0.98PO4/C exhibits the excellent cycling performance at a rateof 1 C, which delivered an initial discharge capacity of 141.0 mAh·g?1 withcapacity retention of 98.4% after 50 cycles. 90
Ce3+ Preparation of LiFe1?xCexPO4/C compositesby solid phase method at high temperature The initial discharge specific capacities of LiFe0.9Ce0.1PO4/C composites at0.1C and 5C are 160.1 and 136.7 mAh·g?1, respectively. 91
Cr3+ Preparation of LiFe0.95Cr0.05PO4/C compositesby solid state microwave method The initial discharge specific capacity of LiFe0.95Cr0.05PO4/C composite at0.1C is 157.7 mAh·g?1 and the capacity retention rate after the 150th cycle ismore than 95%. 92
Ru3+ The composite materials are prepared byusing CH3COOLi, FeC2O4·2H2O, NH4H2PO4and RuCl3 as raw materials and polyethyleneglycol as carbon source The initial discharge specific capacities of LiFe0.99Ru0.01PO4/C composites at1C, 3C and 5C magnitudes are 142, 127 and 101 mAh·g?1, respectively. 93
V4+ Preparation of V-doped LiFePO4/Ccomposites by pilot hydrothermal method The initial discharge specific capacity of LiFe0.95V0.05PO4 composite atdischarge rate of 1500 mA·g?1 is as high as 119 mAh·g?1. 94
Ti4+ The composites doped with Ti are preparedby using Li2CO3, FeSO4·7H2O, H2C2O4, H3PO4, H2O2 and Ti(SO4)2 as raw materials The electrochemical properties of the composites doped with 3% Ti are thebest, the initial discharge specific capacity of composites at 1C and 2C rateare 130 and 124 mAh·g?1, respectively. 95
Mn4+ Preparation of LiFe1?xMnxPO4/C composites bymicrowave assisted solid state reaction The initial discharge specific capacity of LiFe0.99Mn0.01PO4/C composites is163.2 mAh·g?1 at 0.1C with excellnet cycle performance. 96
Nb5+ Preparation of Nb-doped LiFePO4/Ccomposites by pilot scale continuoushydrothermal method The initial discharge specific capacity of the composite with 1% Nb doped at10C is 110 mAh·g?1. 97
Ta5+ Preparation of Ta-doped LiFePO4/Ccomposites by sol-gel method The discharge capacity of Li0.99Ta0.01FePO4/C composites is 155.5mAh·g?1 for the second cycle at 0.33 C and the capacity retention rate ofthe composite is reduced to 120 Ω. The tap density increased by 0.312g·cm?3. 98
Mo6+ Preparation of LiFe1?xMoxPO4/C compositesby microwave assisted solid state reaction LiFe0.95Mo0.05PO4/C exhibits maximum capacity of 169.7 mAh·g?1 at0.1C. After 50 cycles at 0.5C, the discharge capacity of the sample dropsfrom 165.2 mAh·g?1 to 163.3 mAh·g?1 with more than 98% retention ofcapacity. Even at a rate of 10C, a reversible capacity of 112.3 mAh·g?1can still be achieved. 99
Na+, Ti4+ Preparation of Li1?xNaxFe1?xTixPO4/Ccomposites by solid phase method at hightemperature The initial discharge capacity of Li0.97Na0.03Fe0.97Ti0.03PO4/Cs 151.0mAh·g?1 with the capacity retention ratio of 99.3% after 100 cycles at1C. Especially, it still showed a high discharge capacity of over 97.3mAh·g?1 even at a high rate of 20C. 100
Ni2+, Mn4+ LiFePO4/C composites doped with Ni andMn are prepared by solid phase method athigh temperature The initial discharge specific capacity of LiNi0.02Mn0.03Fe0.95PO4/Ccomposites at 0.1C is 164.3 mAh·g?1, it also exhibits excellent cyclicstability with capacity retention of 98.7% cycled at 1C after 100 cycles. 90
Sm3+, Eu3+, Yb3+ Preparation of LiFe0.95M0.05PO4/Composites by hydrothermal method The first discharge capacity of the as-prepared LiFe0.95M0.05PO4/C are153.602, 144.002 and 160.702 mAh·g?1 at 0.2C, respectively. Thespecific surface area of LiFe0.95M0.05PO4/C are 25.202, 21.502 and25.402 m2·g?1, respectively. 101
Al3+, Ti4+, Zr4+, W6+ Preparation of LiFe1?xMxPO4 ompositesby solid phase method at hightemperature At low rates (C/10 to C/30), the initial discharge specific capacity of thecomposites is about 150 mAh·g?1, which is close to 90% of thetheoretical value. 102
F- The LiFe(PO4)1?xF3x/C composites dopedwith F are prepared by usingFePO4·4H2O, LiF, Fe, Li3PO4·1/2H2O asraw materials The initial discharge specific capacities of LiFe(PO4)0.9F0.3/C compositesat 0.1C, 5C and 10C are 151.9 mAh·g?1, 119.4 mAh·g?1 and 109.8mAh·g?1. At a high temperature of 55 ℃ the capacity is only 2.5% after200 cycles at 1C and the capacity retention rate is as high as 91.8% after300 cycles. 103
Cl- Preparation of Cl-doped LiFePO4/Ccomposites by carbothermic reduction The initial discharge specific capacities of the composites at 0.1C and20C are 162 mAh·g?1 and 90 mAh·g?1, respectively. The conductivity isincreased to 1.01 × 10?2 S·cm?1 and the diffusion rate of lithium-ionsincreased to 1.05 × 10?9 cm2·s?1. 104
Table 1 Modification effect of doping with different ions on LiFePO4
Sample Rs Rct I0/(mA·g?1)
25 ℃ -12 ℃ -20 ℃ 25 ℃ -12 ℃ -20 ℃ 25 ℃ -12 ℃ -20 ℃
LFP9.213.115.2288.005064.05290.061.93.12.9
LFP/C?LV13.822.022.6142.102988.04512.0125.64.73.1
Table 2 Result of electrochemical impedance and exchange current density at various temperatures134
Fig 14 Effects of particle size on the specificdischarge capacity of LiFePO4 materials146 Adapted from Springer Publisher.
1 Padhi A. K. ; Nanjundaswamy K. S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144 (4), 1188.
2 Padhi A. K. ; Nanjundaswamy K. S. ; Masquelier C. ; Okada S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144 (5), 1609.
3 Bi Z. Y. ; Zhang X. D. ; He W. ; Min D. D. ; Zhang W. S. RSC Adv. 2013, 3 (43), 19744.
4 Dimesso L. ; F?rster C. ; Jaegermann W. ; Khanderi J. P. ; Tempel H. ; Popp A. ; Engstler J. ; Schneider J. J. ; Sarapulova A. ; Mikhailova D. ; Schmitt L. A. ; Oswaldc S. ; Ehrenbergd H. Chem. Soc. Rev. 2012, 41 (15), 5068.
5 Sun X. F ; Xu Y. L. ; Liu Y. H. ; Li L. Acta Phys. -Chim. Sin. 2012, 28 (12), 2885.
5 孙孝飞; 徐友龙; 刘养浩; 李璐. 物理化学学报, 2012, 28 (12), 2885.
6 Zhang Y. ; Huo Q. Y. ; Du P. P. ; Wang L. Z. ; Zhang A. Q. ; Song Y. H. ; Lv Y. ; Li G. Y. Synth. Met. 2012, 162 (13), 1315.
7 Lu L. G. ; Han X. B. ; Li J. Q. ; Hua J. F. ; Ouyang M. G. J. Power Sources 20131, 226 (3), 272.
8 Amin R. ; Balaya P. ; Maier J. Electrochem. Solid-State Lett. 2007, 10 (1), A13.
9 Morgan D. ; Ven A. V. D. ; Ceder G. Electrochem. Solid-State Lett. 2004, 7 (2), A30.
10 Chung S. Y. ; Chiang Y. M. Electrochem. Solid-State Lett. 2003, 6 (12), A278.
11 Xu Y. N. ; Chung S. Y. ; Bloking J. T. ; Chiang Y. M. ; Ching W. Y. Electrochem. Solid-State Lett. 2004, 7 (6), A131.
12 Jugovi? D. ; Uskokovi? D. J.Power Sources 2009, 190 (2), 538.
13 Andersson A. S. ; Thomas J. O. ; Kalska B. ; H?ggstr?m L. Electrochem. Solid-State Lett. 2000, 3 (2), 66.
14 Lv W. Q. ; Niu Y. H. ; Jian X. ; Zhang K. H. L. ; Wang W. ; Zhao J. Y. ; Wang Z. M. ; Yang W. Q. ; He W. D. Appl. Phys. Lett. 2016, 108 (8), 1188.
15 Abdellahi A. ; Akyildiz O. ; Malik R. ; Thorntonc K. ; Ceder G. J. Mater. Chem. A. 2016, 4 (15), 5436.
16 Masrour R. ; Hlil E. K. ; Obbade S. ; Rossignol C. Solid State Ionics 2016, 289, 214.
17 Gong C. L. ; Xue Z. G. ; Wen S. ; Ye Y. S. ; Xie X. L. J. Power Sources 2016, 318 (30), 93.
18 Bruce P. G. Chem. Commun. 1997, 19 (19), 1817.
19 Yuan L. X ; Wang Z. H. ; Zhang W. X. ; Hu X. L. ; Chen J.Tao. ; Huang Y. H. ; Goodenough J. B. Energy Environ. Sci. 2011, 4 (2), 269.
20 Srinivasan V. ; Newman J. J. Electrochem. Soc. 2004, 151 (10), A1517.
21 Laffont L. ; Delacourt C. ; Gibot P. ; Wu M. Y. ; Kooyman P. ; Masquelier C. ; Tarascon J. M. Chem. Mater. 2006, 18 (23), 5520.
22 Delmas C. ; Maccario M. ; Croguennec L. ; Cras F. L. ; Weill F. Nat. Mater. 2008, 7 (8), 665.
23 Liu H. ; Strobridge F. C. ; Borkiewicz O. J. ; Wiaderek K. M. ; Chapman K. W. ; Chupas P. J. ; Grey C. P. Science 2014, 344 (6191), 1252817.
24 Gu L. ; Zhu C. B. ; Li H. ; Yu Y. ; Li C. L. ; Tsukimoto S. ; Maier J. ; Ikuhara Y. C. J. Am. Chem. Soc. 2011, 133 (13), 4661.
25 Liu X. S. ; Liu J. ; Qiao R. M. ; Yu Y. ; Li H. ; Suo L. M. ; Hu Y. S. ; Chuang Y. D. ; Shu G. J. ; Chou F. C. ; Weng T. C. ; Nordlund D. ; Sokaras D. ; Wang Y. J. ; Lin H. ; Barbiellini B. ; Bansil A. ; Song X. Y. ; Liu Z. ; Yan S. S. ; Liu G. ; Qiao S. ; Richardson T. J. ; Prendergast D. ; Hussain Z. ; Groot F. M. F.D. ; Yang W. L. J. Am. Chem. Soc. 2012, 134 (33), 13708.
26 Orikasa Y. ; Maeda T. ; Koyama Y. ; Murayama H. ; Fukuda K. ; Tanida H. ; Arai H. ; Matsubara E. ; Uchimoto Y. ; Ogumi Z. J. Am. Chem. Soc. 2013, 135 (15), 5497.
27 Sun Y. ; Lu X. ; Xiao R. J. ; Li H. ; Huang X. J. Chem. Mater. 2012, 24 (24), 4693.
28 Xiao D. D. ; Gu L. Sci. Sin. Chim. 2014, 3 (44), 295.
28 肖东东; 谷林. 中国科学:化学, 2014, 3 (44), 295.
29 Cui Q. ; Luo C. H. ; Li G. ; Wang G. X. ; Yan K. P. Ind. Eng. Chem. Res. 2016, 55 (26), 7069.
30 Churikov A. ; Gribov A. ; Bobyl A. ; Kamzin A. ; Terukov. E. Ionics 2014, 20 (1), 1.
31 Ravet N. ; Gauthier M. ; Zaghib K. ; Goodenough J. B. ; Mauger A. ; Gendron F. ; Julien C. M. Chem. Mater. 2007, 19 (10), 2595.
32 Xiao Z. W. ; Zhang Y. J. ; Hu G. R. J. Cent. South Univ. 2015, 22 (6), 2043.
33 Xiao Z. W. ; Zhang Y. J. ; Hu G. R. J. Cent. South Univ. 2015, 22 (12), 4507.
34 Xiao Z. ; Zhang Y. J. ; Hu G. R. J. Appl. Electrochem. 2015, 45 (3), 225.
35 Weng S. Y. ; Yang Z. H. ; Wang Q. ; Zhang J. ; Zhang W. X. Ionics 2013, 19 (2), 235.
36 Hu Y. M. ; Wang G. H. ; Liu C. Z. ; Chou S. L. ; Zhu M. Y. ; Jin H. M. ; Li W. X. ; Li Y. Ceram. Int. 2016, 42 (9), 11422.
37 Dhindsa K. S. ; Kumar A. ; Nazri G. A. ; Naik V. M. ; Garg V.K. ; Oliveira A. C. ; Vaishnava P. P. ; Zhou Z. X. ; Naik R. J. Solid State Electrochem. 2016, 20 (8), 2275.
38 Reklaitis J. ; Davidonis R. ; Dindune A. ; Valdniece D. ; Jasulaitien? V. ; Baltrūnas D. Phys. Status Solidi B 2016, 253 (11), 2283.
39 Ziolkowska D. A. ; Jasinski J. B. ; Hamankiewicz B. ; Korona K. P. ; Wu S. H. Czerwinski. Cryst. Growth Des. 2016, 16 (9), 5006.
40 Xu C. H. ; Wang L. ; He X. M. ; Luo J. ; Shang Y. M. ; Wang J.L. Int. J. Electrochem. Sci. 2016, 11 (2), 1558.
41 Zhao H. C. ; Song Y. ; Guo X. D. ; Zhong B. H. ; Dong J. ; Liu H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347.
41 赵浩川; 宋杨; 郭孝东; 钟本和; 董静; 刘恒. 物理化学学报, 2011, 27 (10), 2347.
42 Toprakci O. ; Ji L. W. ; Lin Z. ; Toprakci H. A. K. ; Zhang X.W. J. Power Sources 2011, 04, 031.
43 Doeff M. M. ; Wilcox J. D. ; Yu R. ; Aumentado A. ; Marcinek M. ; Kostecki R. J. Solid State Electrochem. 2008, 12 (7), 995.
44 Wang M. ; Xue Y. H. ; Zhang K. L. ; Zhang Y. X. Electrochim. Acta 2011, 56 (11), 4294.
45 Akiya N. ; Savage P. E. Chem. Rev. 2002, 102 (8), 2725.
46 Xi X. L. ; Chen G. L. ; Nie Z. R. ; He S. ; Pi X. ; Zhu X. G. ; Zhu J. J. ; Zuo T. Y. J. Alloy. Compd. 2010, 497 (1), 377.
47 Needham S. A. ; Calka A. ; Wang G.X. ; Mosbah A. ; Liu H. K. Electrochem. Commun. 2006, 8 (3), 434.
48 Gu N. Y. ; Wang H. ; Li Y. ; Ma H. Y. ; He X. H. ; Yang Z. Y. J. Solid State Electrochem. 2014, 18 (3), 771.
49 Xu J. ; Chen G. ; Xie C. D. ; Li X. ; Zhou Y. H. Solid State Commun. 2008, 147 (11), 443.
50 Doan T. N. L. ; Bakenov Z. ; Taniguchi I. Adv. Powder Technol. 2010, 21 (2), 187.
51 Hwang B. J. ; Hsu K. F. ; Hu S. K. ; Cheng M. Y. ; Chou T. C. ; Tsay S. Y. ; Santhanamd R. J. Power Sources 2009, 194 (1), 515.
52 Hu Y. K. ; Ren J. X. ; Wei Q. L. ; Guo X. D. ; Tang Y. ; Zhong B. H. ; Liu H. Acta Phys. -Chim. Sin. 2014, 30 (1), 75.
52 胡有坤; 任建新; 魏巧玲; 郭孝东; 唐艳; 钟本和; 刘恒. 物理化学学报, 2014, 30 (1), 75.
53 Palomares V. ; Go?i A. ; Muro I. G. D. ; Meatza I. D. ; Bengoechea Miguel. ; Miguel O. ; Rojoa T. J. Power Sources 2007, 171 (2), 879.
54 Zhu C. ; Yu Y. ; Gu L. ; Weichert K. ; Maier J. Angew. Chem. Int. Ed. 2011, 50 (28), 6278.
55 Shao D. Q. ; Wang J. X. ; Dong X. T. ; Yu W. S. ; Liu G. X. ; Zhang F. F. ; Wang L. M. J. Mater. Sci. -Mater. Electron. 2014, 25 (2), 1040.
56 Qiu Y. J. ; Geng Y. H. ; Li N. N. ; Liu X. L. ; Zuo X. B. Mater. Chem. Phys. 2014, 144 (3), 226.
57 Zhang C. H. ; Liang Y. Z. ; Yao L. ; Qiu Y. P. J. Alloy. Compd. 2015, 627 (8), 91.
58 Patil K. C. ; Aruna S. T. ; Ekambaram S. Curr. Opin. Solid State Mater. Sci. 1997, 2 (2), 158.
59 Sehrawat R. ; Sil A. Ionics 2015, 21 (3), 673.
60 Mohan E. H. ; Siddhartha V. Aims Mater. Sci. 2014, 1 (4), 191.
61 Vujkovi? M. ; Jugovi? D. ; Mitri? M. ; Stojkovic I. ; Cvjeti?anin N. ; Mentus Slavko. Electrochim. Acta 2013, 109 (11), 835.
62 Chu D. B. ; Li Y. ; Song Q. ; Zhou Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1863.
62 褚道葆; 李艳; 宋奇; 周莹. 物理化学学报, 2011, 27 (8), 1863.
63 Wu T. ; Ma X. ; Liu X. ; Zeng G. ; Xiao W. Adv. Funct. Mater. 2016, 30 (2), A70.
64 Tang H. ; Xu J. Mater. Sci. Eng., B 2013, 178 (20), 1503.
65 Li Y. C. ; Geng G. G. ; Hao J. H. ; Zhang J. M. ; Yang C. C. ; Li B. J. Electrochim. Acta 2015, 186 (20), 157.
66 Teja A. S. ; Eckert C. A. Ind. Eng. Chem. Res. 2000, 39 (12), 4442.
67 Hauthal W H. Chemosphere 2001, 43 (1), 123.
68 Lee J. ; Teja A. S. Mater. Lett. 2006, 60 (17), 2105.
69 Zhang Y. J. ; Yang Y. F. ; Wang X. Y. ; Li S. S. Chin. J. Chem. Eng. 2014, 22 (2), 234.
70 Rangappa D. ; Sone K. ; Ichihara M. ; Kudo T. ; Honma I. Chem. Commun. 2010, 46 (40), 7548.
71 Xie M. ; Zhang X. X. ; Wang Y. Z. ; Deng S. X. ; Wang H. ; Liu J. B. ; Yan H. ; Laakso J. ; Lev?nen E. Electrochim. Acta 2013, 94 (4), 16.
72 Xie M. ; Zhang X. X. ; Deng S. X. ; Wang Y. Z. ; Wang H. ; Liu J. B. ; Yan H. ; Laakso J. ; Lev?nen E. RSC Adv. 2013, 3 (31), 12786.
73 Wang Y. G. ; He P. ; Zhou H. S. Energy Environ. Sci. 2011, 4 (3), 805.
74 Zhang D. Y. ; Zhang P. X. ; Lin M. C. ; Liu K. ; Yuan Q. H. ; Xu Q. M. ; Luo Z. K. ; Ren X. Z. J. Inorg. Mater. 2011, 26 (3), 265.
74 张冬云; 张培新; 林木崇; 刘琨; 袁秋华; 许启明; 罗仲宽; 任祥忠. 无机材料学报, 2011, 26 (3), 265.
75 Ni J. F. ; Zhou H ; H . ; Chen J. T. ; Su G. Y. Acta Phys. -Chim. Sin. 2004, 20 (6), 582.
75 倪江锋; 周恒辉; 陈继涛; 苏光耀. 物理化学学报, 2004, 20 (6), 582.
76 Chen Y. ; Wang Z. L. ; Yu C. Y. ; Xia D. G. ; Wu Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (8), 1498.
76 陈宇; 王忠丽; 于春洋; 夏定国; 吴自玉. 物理化学学报, 2008, 24 (8), 1498.
77 Mi C. H. ; Cao G. S. ; Zhao X. B. Chin. J. Inorg. Chem. 2005, 21 (4), 556.
77 米常焕; 曹高劭; 赵新兵. 无机化学学报, 2005, 21 (4), 556.
78 Yu F. ; Zhang J. J. ; Yang Y. F. ; Song G. Z. Chin. J. Inorg. Chem. 2009, 25 (1), 42.
78 于锋; 张敬杰; 杨岩峰; 宋广智. 无机化学学报, 2009, 25 (1), 42.
79 Mi C. H. ; Cao Y. X. ; Zhang X. G. ; Zhao X. B. ; Li H. L. Powder Technol. 2008, 181 (3), 301.
80 He W. ; Wei C. L. ; Zhang X. D. ; Wang Y. Y. ; Liu Q. Z. ; Shen J. X. ; Wang L. Z. ; YuaZe Y. Z. Electrochim. Acta 2016, 219 (20), 682.
81 Kobayashi G. ; Nishimura S. I. ; Park M. S. ; Kanno R. ; Yashima M. ; Ida T. ; Yamada A. Adv. Funct. Mater. 2009, 19 (3), 395.
82 Qian J. F. ; Zhou M. ; Cao Y. L. ; Ai X. P. ; Yang H. X. J. Phys. Chem. C 2010, 114 (8), 3477.
83 Wang D. Y. ; Li H. ; Shi S. Q. ; Huang X. J. ; Chen L. Q. Electrochim. Acta 2005, 50 (14), 2955.
84 Hong J. ; Wang X. L. ; Wang Q. ; Omenya F. ; Chernova N. A. ; Whittingham M. S. ; Graetz J. G. J. Phys. Chem. C 2012, 116 (39), 20787.
85 Zhu Y. R. ; Zhang R. ; Deng L. ; Yi T. F. ; Ye M. F. ; Yao J. H. ; Dai C. S. Metall. Mater. Trans. E 2015, 2 (1), 33.
86 Ma J. ; Li B. H. ; Du H. D. ; Xu C. J. ; Kang F. Y. J. Solid State Electrochem. 2012, 16 (1), 1.
87 Ni J. F. ; Zhou H. H. ; Chen J. T. ; Zhang X. X. Mater. Lett. 2005, 59 (18), 2361.
88 Lee S. B. ; Cho S. H. ; Heo J. B. ; Aravindan V. ; Kim H. S. ; Lee Y. S. J. Alloy. Compd. 2009, 488 (1), 380.
89 Li Y. C. ; Hao J. H. ; Geng G. W. ; Wang Y. F. ; Shang X. K. ; Yang C. C. ; Li B. J. RSC Adv. 2015, 5 (84), 68681.
90 Yuan H. ; Wang X. Y. ; Wu Q. ; Shu H. B. ; Yang X. K. J. Alloy. Compd. 2016, 675 (5), 187.
91 Zhao N. N. ; Li Y. S. ; Zhi X. K. ; Wang L. ; Zhao X. X. ; Wang Y. M. ; Liang G. C. J. Rare Earths 2016, 34 (2), 174.
92 Naik A. ; Zhou J. ; Gao C. ; Liu G. Z. ; Wang L. Mater. Sci.-Poland 2016, 33 (4), 742.
93 Wang Y. R. ; Yang Y. F. ; Hu X. ; Yang Y. B. ; Shao H. X. J. Alloy. Compd. 2009, 481 (1), 590.
94 Johnson I. D. ; Lübke M. ; Wu O. Y. ; Makwana N. M. ; Smales G. J. ; Islam H. U. ; Dedigama R. Y. ; Gruar R. I. ; Tighe C. J. ; Scanlon D. O. ; Corà F. ; Brett D. J. L. ; Shearing P. R. ; Darr J. A. J. Power Sources 2016, 302 (20), 410.
95 Li L. J. ; Li X. H. ; Wang Z. X. ; Wu L. ; Zheng J. C. ; Guo H.J. J. Phys. Chem. Solids 2009, 70 (1), 238.
96 Naik A. ; Zhou J. ; Gao C. ; Liu G. Z. ; Wang L. J. Energy Inst. 2016, 89 (1), 21.
97 Johnson I. D. ; Blagovidova E. ; Dingwall P. A. ; Brett D. J. L. ; Shearing P. R. ; Darr J. A. J. Power Sources 2016, 326 (15), 476.
98 Yang S. T. ; Liu Y. X. ; Yin Y. H. ; Wang H. ; Wang T. Chin. J. Inorg. Chem. 2007, 23 (7), 1165.
98 杨书廷; 刘玉霞; 尹艳红; 王辉; 王涛. 无机化学学报, 2007, 23 (7), 1165.
99 Naik A. ; Ponnappa S. C. Dalton Trans. 2016, 45 (19), 8021.
100 Shu H. B. ; Wang X. Y. ; Wen W. C. ; Liang Q. Q. ; Yang X.K. ; Wei Q. L. ; Hu B. A. ; Liu L. ; Liu X. ; Song Y. F. ; Zho M. ; Bai Y. S. ; Jiang L. L. ; Chen M. F. ; Yang S. Y. ; Tan J. L. ; Liao Y. Q. ; Jiang H. M. Electrochim. Acta 2013, 89 (1), 479.
101 Xu Y. ; Zhao M. H. ; Sun B. Solid State Ionics 2016, 291, 14.
102 Chung S. Y. ; Bloking J. T. ; Chiang Y. M. Nat. Mater 2002, 1 (2), 123.
103 Liao X. Z. ; He Y. S. ; Ma Z. F. ; Zhang X. M. ; Wang L. J. Power Sources 2007, 174 (2), 720.
104 Sun C. S. ; Zhang Y. ; Zhang X. J. ; Zhou Z. J. Power Sources 2010, 195 (11), 3680.
105 Li H. ; Wang Z. X. ; Chen L. Q. ; Huang X.J. Adv. Mater. 2009, 21 (45), 4593.
106 Abbate M. ; Lala S. M. ; Montoro L. A. ; Rosolenb J. M. Electrochem. Solid-State Lett. 2005, 8 (6), A288.
107 Lu J. B. ; Tang Z. L. ; Zhang Z. T. ; Jin Y. Z. Acta Phys. -Chim. Sin. 2005, 21 (3), 319.
107 卢俊彪; 唐子龙; 张中太; 金永拄. 物理化学学报, 2005, 21 (3), 319.
108 Yu W. ; Ou G. ; Qi L. H. ; Wu H. J. Am. Ceram. Soc. 2016, 99 (10), 3214.
109 Zaghib K. ; Mauger A. ; Goodenough J. B. ; Gendron F. ; Julien C. M. Chem. Mater. 2007, 19 (15), 3740.
110 Harrison K. L. ; Bridges C. A. ; Paranthaman M. P. ; Segre C.U. ; Katsoudas J. ; Maroni V. A. ; Idrobo J. C. ; Goodenough J.B. ; Manthiram A. Chem. Mater. 2013, 25 (5), 768.
111 Herle P. S. ; Ellis B. ; Coombs N. ; Nazar L. F. Nat. Mater. 2004, 3 (3), 147.
112 Delacourt C. ; Wurm C. ; Laffont L. ; Leriche J. B. ; Masquelier C. Solid State Ionics 2006, 177, 333.
113 Park K. S. ; Xiao P. H. ; Kim S. Y. ; Dylla A. ; Choi Y. M. ; Henkelman G. ; Stevenson K. J. ; Goodenough J. B. Chem. Mater. 2012, 24 (16), 3212.
114 Ravet N. ; Goodenough J. B. ; Besner S. ; Simoneau M. ; Hovington P. ; Armand M. J. Electrochem. Soc. Abstr. 1999, 99-2, 172.
115 Sun L. N. ; Deng Q. W. ; Fang B. ; Li Y. L. ; Deng L. B. ; Yang B. ; Ren X. Z. ; Zhang P. X. CrystEngComm 2016, 18 (39), 7537.
116 Wang K. ; Cai R. ; Yuan T. ; Yu X. ; Ran R. ; Shao Z. P. Electrochim. Acta 2009, 54 (10), 2861.
117 Liu X. H. ; Zhao Z. W. Powder Technol. 2010, 197 (3), 309.
118 Shin H. C. ; Cho W. I. ; Jang H. J. Power Sources 2006, 159 (2), 1383.
119 Sun C. ; Yan L. M. ; Yue B. H. Acta Phys. -Chim. Sin. 2013, 29 (8), 1666.
119 孙超; 严六明; 岳宝华. 物理化学学报, 2013, 29 (8), 1666.
120 Ni J. F. ; Morishita M. ; Kawabe Y. ; Watada M. ; Takeichi N. ; Sakai T. J. Power Sources. 2010, 195 (9), 2877.
121 Gaberscek M. ; Dominko R. ; Bele M. ; Remskar M. ; Hanzel D. ; Jamnik J. Solid State Ionics 2005, 176, 1801.
122 Zhang H. Y. ; Chen Y. T. ; Zheng C. C. ; Zhang D. F. ; He C. H. Ionics 2015, 21 (7), 1813.
123 Yu H. M. ; Zheng W. ; Cao G. S. ; Zhao X. B. Acta Phys. -Chim. Sin. 2009, 25 (11), 2186.
123 余红明; 郑威; 曹高劭; 赵新兵. 物理化学学报, 2009, 25 (11), 2186.
124 Kuwahara A. ; Suzuki S. ; Miyayama M. Ceram. Int. 2008, 34 (4), 863.
125 Du Y. H. ; Tang Y. F. ; Huang F. Q. ; Chang C. k. RSC Adv. 2016, 6 (57), 52279.
126 Li Q. R. ; Zhou Z. F. ; Liu S. S. ; Zhang X. X. Ionics 2016, 22 (7), 1027.
127 Lu J. B. ; Le B. ; Tang Z. L. ; Zhang Z. T. ; Li J. R. ; Shen W. C. Rare Metal Mat. Eng. 2005, 34 (z2), 673.
127 卢俊彪; 乐斌; 唐子龙; 张中太; 李俊荣; 沈万慈. 稀有金属材料与工程, 2005, 34 (z2), 673.
128 Yang W. Y. ; Zou M. Z. ; Zhao G. Y. ; Hong Z. S. ; Feng Q. ; Li J. X. ; Lin Y. B. ; Huang Z. G. Solid State Ionics 2016, 292, 103.
129 Saliman M. A. ; Okawa H. ; Takai M. ; Ono Y. ; Kato T. ; Sugawara K. ; Sato M. Jpn. J. Appl. Phys. 2016, 55 (7S1), 07KE05.
130 Zhao S. X. ; Li Y. D. ; Ding H. ; Li B. H. ; Nan C. W. J. Inorg. Mater. 2013, 28 (11), 1265.
130 赵世玺; 李颖达; 丁浩; 李宝华; 南策文. 无机材料学报, 2013, 28 (11), 1265.
131 Xu Y. P. ; Mao J. J. Mater. Sci. 2016, 51 (22), 10026.
132 Tang H. ; Tan L. ; Jun X. U. T. Nonferr. Metal. Soc. 2013, 23 (2), 451.
133 Zhang X. P. ; Guo H. J. ; Li X. H. ; Wang Z. X. ; Peng W. J. ; Wu L. Chem. J. Chin. Univ. 2012, 33 (2), 236.
133 张晓萍; 郭华军; 李新海; 王志兴; 彭文杰; 伍凌. 高等学校化学学报, 2012, 33 (2), 236.
134 Ma Z. P. ; Shao G. J. ; Wang X. ; Song J. J. ; Wang G. L. Ionics 2013, 19 (12), 1861.
135 Ma Z. P. ; Shao G. J. ; Qin X. J. ; Fan Y. Q. ; Wang G. L. ; Song J. J. ; Liu T. T. J.Power Sources 2014, 269 (4), 194.
136 Ma Z. P. ; Peng Y. S. ; Wang G. L. ; Fan Y. Q. ; Song J. J. ; Liu T. T. ; Qin X. J. ; Shao G. J. Electrochim. Acta. 2015, 156 (12), 77.
137 Bai Y. M. ; Qiu P. ; Wen Z. L. ; Han S. C. J. Alloy. Compd. 2010, 508 (1), 1.
138 Huang Y. H. ; Goodenough J. B. Chem. Mater. 2008, 20 (23), 7237.
139 Sehrawat R. ; Sil A. J. Mater. Sci.: Mater. Electron. 2015, 26 (7), 5175.
140 Yamada A. ; Chung S. C. ; Hinokuma K. J. Electrochem. Soc. 2001, 148 (3), A224.
141 Wu J. ; Dathar G. K. P. ; Sun C. W. ; Theivanayagam M. G. ; Applestone D. ; Dylla A. G. ; Manthiram A. ; Henkelman G. ; Goodenough J. B. ; Stevenson K. J. Nanotechnology 2013, 24 (42), 424009.
142 Huang H. ; Yin S. C. ; Nazar L. F. Electrochem. Solid-State Lett. 2001, 4 (10), A170.
143 Saravanan K. ; Balaya P. ; Reddy M. V. ; Chowdari B. V. R. ; Vittal J. J. Energy Environ. Sci. 2010, 3 (4), 457.
144 Hong S. A. ; Kim S. J. ; Chung K. Y. ; Chun M. S. ; Lee B. G. ; Kim J. J. Supercrit. Fluids. 2013, 73, 70.
145 Liu T. F. ; Zhao L. ; Wang D. L. ; Zhu J. S. ; Wang B. ; Guo C. F. RSC Adv. 2014, 4 (20), 10067.
146 Liu Z. X. ; Xu B. ; Xing Y. ; Li J. J. ; Zhang L. S. ; Wang L. Z. ; Fang S. M. J. Nanopart. Res. 2015, 17 (3), 163.
147 Viji M. ; Swain P. ; Mocherla P. S. V. ; Sudakar C. RSC Adv. 2016, 6 (46), 39710.
148 Wilcox J. D. ; Doeff M. M. ; Marcinek M. ; Kostecki R. J. Electrochem. Soc. 2007, 154 (5), A389.
149 Yu F. ; Zhang L. L. ; Li Y. C. ; An Y. X. ; Zhu M. Y. ; Dai B. RSC Adv. 2014, 4 (97), 54576.
[1] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[3] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1462-1473.
[4] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1324-1337.
[5] Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2064-2071.
[6] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[7] LI Wan-Fei, LIU Mei-Nan, WANG Jian, ZHANG Yue-Gang. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 165-182.
[8] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[9] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[10] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2045-2051.
[11] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1604-1622.
[12] Bo-Cai CHEN,Yang SHEN,Jian-Hong WEI,Rui XIONG,Jing SHI. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1371-1382.
[13] Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1330-1346.
[14] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 691-700.
[15] WANG Yin, SUN Feng-Ling, ZHANG Xiao-Dong, TAO Hong, YANG Yi-Qiong. Microwave-Assisted Synthesis of Esterified Bacterial Celluloses to Effectively Remove Pb(II)[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 753-762.