Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (6): 1085-1107    DOI: 10.3866/PKU.WHXB201704114
New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4
ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650000, P. R. China
Download:   PDF(6417KB) Export: BibTeX | EndNote (RIS)      


Lithium-ion batteries have been extensively studied due to their excellent electrochemical performance as an effective energy storage device for sustainable energy sources. The key to the development and application of this technology is the improvement of electrode materials. LiFePO4 has captured the attention of researchers both home and abroad as a potential cathode material for lithium-ion batteries because of its long cycle life, energy density, stable charge/discharge performance, good thermal stability, high safety, light weight and low toxicity. However, there are still some technical bottlenecks in the application of LiFePO4, such as relatively low conductivity, low diffusion coefficient of lithium ions, and low tap density. Moreover, the cycle performance, low-temperature characteristics, and rate performance are not ideal, restricting its application and development. In recent years, researchers have sought to solve these problems by improving the preparation process and attempting related modifications. In this paper, we have provided a systemic review of the structure, electrochemical reaction mechanism, preparation, and modification of LiFePO4. The main problems associated with LiFePO4 cathode materials and possible solutions are discussed. We have also investigated the future research direction and application prospect of LiFePO4 cathode materials.

Key wordsLiFePO4      Research progress      Electrochemical reaction mechanism      Preparation method      Modification     
Received: 11 December 2016      Published: 11 April 2017
MSC2000:  O646  

The project was supposed by the National Natural Science Foundation of China (51604132).

Corresponding Authors: LI Xue     E-mail:
Cite this article:

ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.

URL:     OR

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997, 144 (4), 1188. doi: 10.1149/1.1837571
(2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609. doi: 10.1149/1.1837649
(3) Bi, Z. Y.; Zhang, X. D.; He, W.; Min, D. D.; Zhang, W. S. RSC Adv. 2013, 3 (43), 19744. doi: 10.1039/C3RA42601G
(4) Dimesso, L.; Förster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J. J.; Sarapulova, A.; Mikhailova, D.; Schmitt, L. A.; Oswaldc, S.; Ehrenbergd, H. Chem. Soc. Rev. 2012, 41 (15), 5068. doi: 10.1039/C2CS15320C
(5) Sun, X. F; Xu, Y. L.; Liu, Y. H.; Li, L. Acta Phys. -Chim. Sin. 2012, 28 (12), 2885. [孙孝飞, 徐友龙, 刘养浩, 李璐. 物理化学学报, 2012, 28 (12), 2885.] doi: 10.3866/PKU.WHXB201209271
(6) Zhang, Y.; Huo, Q. Y.; Du, P. P.; Wang, L. Z.; Zhang, A. Q.; Song, Y. H.; Lv, Y.; Li, G. Y. Synth. Met. 2012, 162 (13), 1315. doi: 10.1016/j.synthmet.2012.04.025
(7) Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G.
(8) J. Power Sources 2013, 226 (3), 272. doi: 10.1016/j.jpowsour.2012.10.060
(9) Amin, R.; Balaya, P.; Maier, J. Electrochem. Solid-State Lett. 2007, 10 (1), A13. doi: 10.1149/1.2388240
(10) Morgan, D.; Ven, A. V. D.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7 (2), A30. doi: 10.1149/1.1633511
(11) Chung, S. Y.; Chiang, Y. M. Electrochem. Solid-State Lett. 2003, 6 (12), A278. doi: 10.1149/1.1621289
(12) Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electrochem. Solid-State Lett. 2004, 7 (6), A131. doi: 10.1149/1.1703470
(13) Jugovi?, D.; Uskokovi?, D. J. Power Sources 2009, 190 (2), 538. doi: 10.1016/j.jpowsour.2009.01.074
(14) Andersson, A. S.; Thomas, J. O.; Kalska, B.; Häggström, L.Electrochem. Solid-State Lett. 2000, 3 (2), 66. doi: 10.1149/1.1390960
(15) Lv, W. Q.; Niu, Y. H.; Jian, X.; Zhang, K. H. L.; Wang, W.; Zhao, J. Y.; Wang, Z. M.; Yang, W. Q.; He, W. D. Appl. Phys. Lett. 2016, 108 (8), 1188. doi: 10.1063/1.4942849
(16) Abdellahi, A.; Akyildiz, O.; Malik, R.; Thorntonc, K.; Ceder, G.J. Mater. Chem. A. 2016, 4 (15), 5436. doi: 10.1039/C5TA10498J
(17) Masrour, R.; Hlil, E. K.; Obbade, S.; Rossignol, C. Solid State Ionics 2016, 289, 214. doi: 10.1016/j.ssi.2016.03.016
(18) Gong, C. L.; Xue, Z. G.; Wen, S.; Ye, Y. S.; Xie, X. L. J. Power Sources 2016, 318 (30), 93. doi: 10.1016/j.jpowsour.2016.04.008
(19) Bruce, P. G. Chem. Commun. 1997, 19 (19), 1817. doi: 10.1039/A608551B
(20) Yuan, L. X; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J.Tao.; Huang, Y. H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269. doi: 10.1039/C0EE00029A
(21) Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151 (10), A1517. doi: 10.1149/1.1785012
(22) Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier. C.; Tarascon, J. M. Chem. Mater. 2006, 18 (23), 5520. doi: 10.1021/cm0617182
(23) Delmas, C.; Maccario, M.; Croguennec, L.; Cras, F. L.; Weill, F. Nat. Mater. 2008, 7 (8), 665. doi: 10.1038/nmat2230
(24) Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Science 2014, 344 (6191), 1252817. doi: 10.1126/science.1252817
(25) Gu, L.; Zhu, C. B.; Li, H.; Yu, Y.; Li, C. L.; Tsukimoto, S.; Maier, J.; Ikuhara, Y. C. J. Am. Chem. Soc. 2011, 133 (13), 4661. doi: 10.1021/ja109412x
(26) Liu, X. S.; Liu, J.; Qiao, R. M.; Yu, Y.; Li, H.; Suo, L. M.; Hu, Y. S.; Chuang, Y. D.; Shu, G. J.; Chou, F. C.; Weng, T. C.; Nordlund, D.; Sokaras, D.; Wang, Y. J.; Lin, H.; Barbiellini, B.; Bansil, A.; Song, X. Y.; Liu, Z.; Yan, S. S.; Liu, G.; Qiao, S.; Richardson, T. J.; Prendergast, D.; Hussain, Z.; Groot, F. M. F.D.; Yang, W. L. J. Am. Chem. Soc. 2012, 134 (33), 13708. doi: 10.1021/ja303225e
(27) Orikasa, Y.; Maeda, T.; Koyama, Y.; Murayama, H.; Fukuda, K.; Tanida, H.; Arai, H.; Matsubara, E.; Uchimoto, Y.; Ogumi, Z. J. Am. Chem. Soc. 2013, 135 (15), 5497. doi: 10.1021/ja312527x
(28) Sun, Y.; Lu, X.; Xiao, R. J.; Li, H.; Huang, X. J. Chem. Mater. 2012, 24 (24), 4693. doi: 10.1021/cm3028324
(29) Xiao, D. D.; Gu, L. Sci. Sin. Chim. 2014, 3 (44), 295. [肖东东, 谷林. 中国科学: 化学, 2014, 3 (44), 295.] doi: 10.1360/032013-269
(30) Cui, Q.; Luo, C. H.; Li, G.; Wang, G. X.; Yan, K. P. Ind. Eng. Chem. Res. 2016, 55 (26), 7069. doi: 10.1021/acs.iecr.6b00023
(31) Churikov, A.; Gribov, A.; Bobyl, A.; Kamzin, A.; Terukov, E.Ionics 2014, 20 (1), 1. doi: 10.1007/s11581-013-0948-4
(32) Ravet, N.; Gauthier, M.; Zaghib, K.; Goodenough, J. B.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2007, 19 (10), 2595. doi: 10.1021/cm070485r
(33) Xiao, Z. W.; Zhang, Y. J.; Hu, G. R. J. Cent. South Univ. 2015, 22 (6), 2043. doi: 10.1007/s11771-015-2727-z
(34) Xiao, Z. W.; Zhang, Y. J.; Hu, G. R. J. Cent. South Univ. 2015, 22 (12), 4507. doi: 10.1007/s11771-015-2999-3
(35) Xiao, Z.; Zhang, Y. J.; Hu, G. R. J. Appl. Electrochem. 2015, 45 (3), 225. doi: 10.1007/s10800-014-0780-1
(36) Weng, S. Y.; Yang, Z. H.; Wang, Q.; Zhang, J.; Zhang, W. X.Ionics 2013, 19 (2), 235. doi: 10.1007/s11581-012-0746-4
(37) Hu, Y. M.; Wang, G. H.; Liu, C. Z.; Chou, S. L.; Zhu, M. Y.; Jin, H. M.; Li, W. X.; Li, Y. Ceram. Int. 2016, 42 (9), 11422. doi: 10.1016/j.ceramint.2016.04.075
(38) Dhindsa, K. S.; Kumar, A.; Nazri, G. A.; Naik, V. M.; Garg, V.K.; Oliveira, A. C.; Vaishnava, P. P.; Zhou, Z. X.; Naik, R. J. Solid State Electrochem. 2016, 20 (8), 2275. doi: 10.1007/s10008-016-3239-y
(39) Reklaitis, J.; Davidonis, R.; Dindune, A.; Valdniece, D.; Jasulaitien?, V.; Baltrūnas, D. Phys. Status Solidi B 2016, 253 (11), 2283. doi: 10.1002/pssb.201600028
(40) Ziolkowska, D. A.; Jasinski, J. B.; Hamankiewicz, B.; Korona, K. P.; Wu, S. H.; Czerwinski. Cryst. Growth Des. 2016, 16 (9), 5006. doi: 10.1021/acs.cgd.6b00575
(41) Xu, C. H.; Wang, L.; He, X. M.; Luo, J.; Shang, Y. M.; Wang, J.L. Int. J. Electrochem. Sci. 2016, 11 (2), 1558
(42) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu, H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347. [赵浩川, 宋杨, 郭孝东, 钟本和, 董静, 刘恒. 物理化学学报, 2011, 27 (10), 2347.] doi: 10.3866/PKU.WHXB20110905
(43) Toprakci, O.; Ji, L. W.; Lin, Z.; Toprakci, H. A. K.; Zhang, X.W. J. Power Sources 2011, 196 (18), 7692. doi: 10.1016/j.jpowsour.2011.04.031
(44) Doeff, M. M.; Wilcox, J. D.; Yu, R.; Aumentado, A.; Marcinek, M.; Kostecki, R. J. Solid State Electrochem. 2008, 12 (7), 995. doi: 10.1007/s10008-007-0419-9
(45) Wang, M.; Xue, Y. H.; Zhang, K. L.; Zhang, Y. X. Electrochim. Acta 2011, 56 (11), 4294. doi: 10.1016/j.electacta.2011.01.074
(46) Akiya, N.; Savage, P. E. Chem. Rev. 2002, 102 (8), 2725. doi: 10.1021/cr000668w
(47) Xi, X. L.; Chen, G. L.; Nie, Z. R.; He, S.; Pi, X.; Zhu, X. G.; Zhu, J. J.; Zuo, T. Y. J. Alloy. Compd. 2010, 497 (1), 377. doi: 10.1016/j.jallcom.2010.03.078
(48) Needham, S. A.; Calka, A.; Wang, G.X.; Mosbah, A.; Liu, H, K.Electrochem. Commun. 2006, 8 (3), 434. doi: 10.1016/j.elecom.2005.12.011
(49) Gu, N. Y.; Wang, H.; Li, Y.; Ma, H. Y.; He, X. H.; Yang, Z. Y. J. Solid State Electrochem. 2014, 18 (3), 771. doi: 10.1007/s10008-013-2319-5
(50) Xu, J.; Chen, G.; Xie, C. D.; Li, X.; Zhou, Y. H. Solid State Commun. 2008, 147 (11), 443. doi: 10.1016/j.ssc.2008.07.013
(51) Doan, T. N. L.; Bakenov, Z.; Taniguchi, I. Adv. Powder Technol. 2010, 21 (2), 187. doi: 10.1016/j.apt.2009.10.016
(52) Hwang, B. J.; Hsu, K. F.; Hu, S. K.; Cheng, M. Y.; Chou, T. C.; Tsay, S. Y.; Santhanamd, R. J. Power Sources 2009, 194 (1), 515. doi: 10.1016/j.jpowsour.2009.05.006
(53) Hu, Y. K.; Ren, J. X.; Wei, Q. L.; Guo, X. D.; Tang, Y.; Zhong, B. H.; Liu, H. Acta Phys. -Chim. Sin. 2014, 30 (1), 75. [胡有坤, 任建新, 魏巧玲, 郭孝东, 唐艳, 钟本和, 刘恒. 物理化学学报, 2014, 30 (1), 75.] doi: 10.3866/PKU.WHXB201311261
(54) Palomares, V.; Goñi, A.; Muro, I. G. D.; Meatza, I. D.; Bengoechea, Miguel.; Miguel, O.; Rojoa, T. J. Power Sources 2007, 171 (2), 879. doi: 10.1016/j.jpowsour.2007.06.161
(55) Zhu, C.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Angew. Chem. Int. Ed. 2011, 50 (28), 6278. doi: 10.1002/anie.201005428
(56) Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci. -Mater. Electron. 2014, 25 (2), 1040. doi: 10.1007/s10854-013-1684-2
(57) Qiu, Y. J.; Geng, Y. H.; Li, N. N.; Liu, X. L.; Zuo, X. B. Mater. Chem. Phys. 2014, 144 (3), 226. doi: 10.1016/j.matchemphys.2013.12.027
(58) Zhang, C. H.; Liang, Y. Z.; Yao, L.; Qiu, Y. P. J. Alloy. Compd. 2015, 627 (8), 91. doi: 10.1016/j.jallcom.2014.12.067
(59) Patil, K. C.; Aruna, S. T.; Ekambaram, S. Curr. Opin. Solid State Mater. Sci. 1997, 2 (2), 158. doi: 10.1016/S1359-0286 (97)80060-5
(60) Sehrawat, R.; Sil, A. Ionics 2015, 21 (3), 673. doi: 10.1007/s11581-014-1229-6
(61) Mohan, E. H.; Siddhartha, V. Aims Mater. Sci. 2014, 1 (4), 191. doi: 10.3934/matersci.2014.4.191
(62) Vujkovi?, M.; Jugovi?, D.; Mitri?, M.; Stojkovic, I.; Cvjeti?anin, N.; Mentus, Slavko. Electrochim. Acta 2013, 109 (11), 835. doi: 10.1016/j.electacta.2013.07.219
(63) Chu, D. B.; Li, Y.; Song, Q.; Zhou, Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1863. [褚道葆, 李艳, 宋奇, 周莹. 物理化学学报, 2011, 27 (8), 1863.] doi: 10.3866/PKU.WHXB20110807
(64) Wu, T.; Ma, X.; Liu, X.; Zeng, G.; Xiao, W. Adv. Funct. Mater. 2016, 30 (2), A70. doi: 10.1179/17535557A15Y.000000011
(65) Tang, H.; Xu, J. Mater. Sci. Eng., B 2013, 178 (20), 1503. doi: 10.1016/j.mseb.2013.08.014
(66) Li, Y. C.; Geng, G. G.; Hao, J. H.; Zhang, J. M.; Yang, C. C.; Li, B. J. Electrochim. Acta 2015, 186 (20), 157. doi: 10.1016/j.electacta.2015.10.121
(67) Teja, A. S.; Eckert, C. A. Ind. Eng. Chem. Res. 2000, 39 (12), 4442. doi: 10.1021/ie000915m
(68) Hauthal, W H. Chemosphere 2001, 43 (1), 123. doi: 10.1016/S0045-6535 (00)00332-5
(69) Lee, J.; Teja, A. S. Mater. Lett. 2006, 60 (17), 2105. doi: 10.1016/j.matlet.2005.12.083
(70) Zhang, Y. J.; Yang, Y. F.; Wang, X. Y.; Li, S. S. Chin. J. Chem. Eng. 2014, 22 (2), 234. doi: 10.1016/S1004-9541 (14)60051-3
(71) Rangappa, D.; Sone, K.; Ichihara, M.; Kudo, T.; Honma, I.Chem. Commun. 2010, 46 (40), 7548. doi: 10.1039/c0cc03034a
(72) Xie, M.; Zhang, X. X.; Wang, Y. Z.; Deng, S. X.; Wang, H.; Liu, J. B.; Yan, H.; Laakso, J.; Levänen, E. Electrochim. Acta 2013, 94 (4), 16. doi: 10.1016/j.electacta.2013.01.131
(73) Xie, M.; Zhang, X. X.; Deng, S. X.; Wang, Y. Z.; Wang, H.; Liu, J. B.; Yan, H.; Laakso, J.; Levänen, E. RSC Adv. 2013, 3 (31), 12786. doi: 10.1039/C3RA41133H
(74) Wang, Y. G.; He, P.; Zhou, H. S. Energy Environ. Sci. 2011, 4 (3), 805. doi: 10.1039/c0ee00176g
(75) Zhang, D. Y.; Zhang, P. X.; Lin, M. C.; Liu, K.; Yuan, Q. H.; Xu, Q. M.; Luo, Z. K.; Ren, X. Z. J. Inorg. Mater. 2011, 26 (3), 265. [张冬云, 张培新, 林木崇, 刘琨, 袁秋华, 许启明, 罗仲宽, 任祥忠. 无机材料学报, 2011, 26 (3), 265.] doi: 10.3724/SP.J.1077.2011.00265
(76) Ni, J. F.; Zhou, H, H.; Chen, J. T.; Su, G. Y. Acta Phys. -Chim. Sin. 2004, 20 (6), 582. [倪江锋, 周恒辉, 陈继涛, 苏光耀. 物理化学学报, 2004, 20 (6), 582.] doi: 10.3866/PKU.WHXB20040606
(77) Chen, Y.; Wang, Z. L.; Yu, C. Y.; Xia, D. G.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (8), 1498. [陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24 (8), 1498.] doi: 10.3866/PKU.WHXB20080829
(78) Mi, C. H.; Cao, G. S.; Zhao, X. B. Chin. J. Inorg. Chem. 2005, 21 (4), 556. [米常焕, 曹高劭, 赵新兵. 无机化学学报, 2005, 21 (4), 556.] doi: 10.3321/j.issn:1001-4861.2005.04.022
(79) Yu, F.; Zhang, J. J.; Yang, Y. F.; Song, G. Z. Chin. J. Inorg. Chem. 2009, 25 (1), 42. [于锋, 张敬杰, 杨岩峰, 宋广智.无机化学学报, 2009, 25 (1), 42.] doi: 10.3321/j.issn:1001-4861.2009.01.008
(80) Mi, C. H.; Cao, Y. X.; Zhang, X. G.; Zhao, X. B.; Li, H. L.Powder Technol. 2008, 181 (3), 301. doi: 10.1016/j.powtec.2007.05.017

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[4] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337.
[5] WU Qian, WENG Wei-Zheng, LIU Chun-Li, HUANG Chuan-Jing, XIA Wen-Sheng, WAN Hui-Lin. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2064-2071.
[6] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[7] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[8] LI Wan-Fei, LIU Mei-Nan, WANG Jian, ZHANG Yue-Gang. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 165-182.
[9] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[10] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2045-2051.
[11] GAO Qi, KAN Cai-Xia, LI Jun-Long, LOU Ye-Ke, WEI Jing-Jing. Research Progress on the Liquid-Phase Preparation and Surface Modification of Copper Nanowires[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1604-1622.
[12] ZHANG Xue, HAN Yang, CHAI Shuang-Zhi, HU Nan-Tao, YANG Zhi, GENG Hui-Juan, WEI Hao. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1330-1346.
[13] CHEN Bo-Cai, SHEN Yang, WEI Jian-Hong, XIONG Rui, SHI Jing. Research Progress on g-C3N4-Based Z-Scheme Photocatalytic System[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1371-1382.
[14] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 691-700.
[15] WANG Yin, SUN Feng-Ling, ZHANG Xiao-Dong, TAO Hong, YANG Yi-Qiong. Microwave-Assisted Synthesis of Esterified Bacterial Celluloses to Effectively Remove Pb(II)[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 753-762.