Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (8): 1672-1680    DOI: 10.3866/PKU.WHXB201704143
ARTICLE     
Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas
Pei-Yi LIAO1,2,Chen ZHANG1,2,Li-Jun ZHANG1,Yan-Zhang YANG2,Liang-Shu ZHONG2,Xiao-Ya GUO1,Hui WANG2,*(),Yu-Han SUN2,*()
1 School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
2 Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
Download: HTML     PDF(4215KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of Cu/Co/Mn/Al catalysts derived from hydrotalcite precursors with different Cu/Co molar ratios (0, 0.1, 0.5, 1.0, and 2.0) were prepared and used for the synthesis of higher alcohols from syngas. N2 physical adsorption desorption, inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), hydrogen temperature-programmed reduction (H2-TPR), thermogravimetry (TG), and high-resolution transmission electron microscopy (HRTEM) techniques were employed to investigate the physical and chemical properties of the Cu/Co/Mn/Al catalysts. The results show that the optimum Cu content can increase specific surface area, improve reducibility, and form regular layered structure to provide more uniform distribution of active sites, thereby enhancing catalytic activity and alcohol selectivity. When the Cu/Co molar ratio was 0.5, the yield of alcohol and the alcohol selectivity reached the maximum values of 0.071 g·g-1·h-1 and 35.9%, respectively.



Key wordsHigher alcohols synthesis      Layered-double hydroxide      Cu/Co/Mn/Al catalyst      Cu/Co molar ratio      Syngas conversion     
Received: 28 December 2016      Published: 14 April 2017
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(21403278);China Shenhua Coal to Liquid;Chemical Company Limited, Shanxi Lu?an Coal Corporation Limited;Shell Global Solutions International B. V
Corresponding Authors: Hui WANG,Yu-Han SUN     E-mail: wanghh@sari.ac.cn;yhsun@sari.ac.cn
Cite this article:

Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704143     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I8/1672

CatalystsMolar ratio of Cu/Co/Mn/AlaMolar ratio of Cu/Co bSBET/(m2·g?1)Average pore diameter/nmPorevolume/(cm3·g?1)
CCMA-10:1:1:10.011611.20.3
CCMA-20.1:1:1:10.111413.10.4
CCMA-30.5:1:1:10.513913.90.5
CCMA-41:1:1:10.916013.40.5
CCMA-52:1:1:11.9124160.5
 
 
 
 
 
 
 
 
 
 
 
CatalystsAlcohol selectivity/% (w)Hydrocarbon selectivity/% (w)
MeOHC2?4OHC5+OHC1C2?4C5+
CCMA-13.622.174.326.424.748.9
CCMA-214.837.947.317.545.237.3
CCMA-324.842.332.915.748.735.6
CCMA-415.430.454.215.747.936.4
CCMA-515.346.937.817.155.527.5
 
 
CatalystsFactors for alcohols (α)Factors for hydrocarbons (α)
CCMA-10.870.67
CCMA-20.710.71
CCMA-30.690.72
CCMA-40.710.72
CCMA-50.70.71
 
 
 
1 Pan X. L. ; Fan Z. L. ; Chen W. Nat. Mater. 2007, 6, 507.
2 Spivey J. J. ; Egbebi A. Chem. Soc. Rev. 2007, 36, 1514.
3 Subramani V. ; Gangwal S. K. Energy Fuels. 2008, 22, 814.
4 Gupta M. ; Smith M. L. ACS Catal. 2011, 1, 641.
5 Fang K. G. ; Li D. B. ; Lin M. G. Catal. Today. 2009, 147, 133.
6 Choi Y. M. ; Liu P. J. Am. Chem. Soc. 2009, 131, 13054.
7 Prieto G. ; Concepción P. J. Catal. 2011, 280, 274.
8 Yang N. Y. ; Medford A. J. ; Liu X.Y. J. Am. Chem. Soc. 2016, 138, 3705.
9 Sun J. ; Wan S. L. ; Wang F. Ind. Eng. Chem. Res. 2015, 54, 7841.
10 Epling W. S. ; Minahan D. M. J. Catal. 1998, 175, 175.
11 Xu M. T. ; Gines M. J. L. ; Hilmen A. M. J. Catal. 1997, 171, 130.
12 Xiang M. L. ; Li D. B. ; Li W. H. Catal. Commun. 2007, 8, 503.
13 Shou H. ; Ferrari D. ACS Catal. 2012, 2, 1408.
14 Thao N. T. ; Niaki M. H. Z. J. Catal. 2007, 245, 348.
15 Subramanian N. D. ; Balaji G. Catal. Today. 2009, 147, 100.
16 Xu H. Y. ; Chu W. ; Deng S. Y. Acta Phys. -Chim. Sin. 2010, 26, 345.
16 徐慧远; 储伟; 邓思玉. 物理化学学报, 2010, 26, 345.
17 Xiao K. ; Qi X. Z. Catal. Sci. Technol. 2013, 3, 1591.
18 Wang J. J. ; Chernavskii P. A. J. Catal. 2012, 286, 51.
19 Yang Y. Z. ; Qi X. Z. ; Wang X. X. Catal. Today. 2016, 270, 101.
20 Prieto G. Z. ; Beijer S. Angew. Chem. Int. Ed. 2014, 53, 6397.
21 Liu Y. J. ; Zuo Z. J. Fuel. Process. Technol. 2016, 144, 186.
22 Xiang Y. Z. ; Chitry V. J. Am. Chem. Soc. 2013, 135, 7114.
23 Duan X. Chem. Soc. Rev. 2014, 43, 7040.
24 Gao W. ; Zhao Y. F. ; Liu J. M. Catal. Sci. Technol. 2013, 31, 324.
25 Grey C. P. Science 2008, 321, 113.
26 Ma K. Y. ; Cheng J. P. J. Alloy. Compd. 2016, 679, 277.
27 Yuan Z. ; Wang L. ; Wang J. Appl. Catal. B: Environ. 2011, 101, 431.
28 Xia S. ; Nie R. ; Lu X. J. Catal. 2012, 296, 1.
29 Anton J. ; Nebel J. Appl. Catal. A: Gen. 2015, 505, 326.
30 Su J. J. ; Zhang Z. P. J. Catal. 2016, 336, 94.
31 Gao P. ; Li F. ; Zhan H. J. J. Catal. 2013, 298, 51.
32 Wang J. J. ; Chernavskii P. A. J. Catal. 2012, 286, 51.
33 Deng S. Y. ; Chu W. ; Chu W. J. Nat. Gas. Chem. 2008, 17, 369.
34 Alejandre. A. ; Medina F. ; Salagre P. Chem. Mater. 1999, 11, 939.
35 Smith M. L. ; Campos. A. ; Spivey J. J. Catal. Today. 2012, 182, 60.
36 Frantisek K. ; Tomas R. ; Jana D. J. Solid State Chem. 2006, 179, 812.
37 Pei Y. ; Jian S. ; Chen Y. RSC Adv. 2015, 5, 76330.
38 Byoung K. K. ; Dae S. P. ; Yang S. Y. Catal. Commu. 2012, 24, 90.
39 Ning X. ; An Z. ; He J. J. Catal. 2016, 340, 236.
40 Xu Z. P. ; Zeng H. C. J. Phys. Chem. B. 2000, 104, 10206.
41 Cheng. J. ; Yu. J.J. ; Wang. X. P. Energy Fuels 2008, 22, 2131.
42 Velu S. ; Sabde D. P. Chem. Mater. 1998, 10, 3451.
43 Trujillano R. ; Holgado M. J. Phys. B 2006, 373, 267.
44 Behrens. M. ; Kasatkin. I. Chem. Mater. 2010, 22, 386.
45 Gao P. ; Yang H. J. CO 2Util. 2016, 16, 32.
46 Cheng X. F. ; Wu B. S. J. Mol. Catal. A: Chem. 2010, 329, 103.
47 Laan G. P. V. Catal. Rev. 1999, 41, 255.
48 Matsuzaki T. ; Takeuchi K. ; Hanaoka T. Catal. Today 1996, 28, 251.
[1] LIU Jian-Guo, DING Ming-Yue, WANG Tie-Jun, MA Long-Long. Structure and Performance of Cu-Fe Bimodal Support for Higher Alcohol Syntheses[J]. Acta Phys. -Chim. Sin., 2012, 28(08): 1964-1970.
[2] LI De-Bao;QI Hui-Jie;LI Wen-Huai;SUN Yu-Han;ZHONG Bing. Surficial Structure and Charge Effects of Ni Promoted K2CO3/MoS2 Catalysts for Higher Alcohols Synthesis[J]. Acta Phys. -Chim. Sin., 2006, 22(09): 1132-1136.
[3] Wang Hai-You; Liu Jin-Bo; Fu Jin-Kun; Cai Qi-Rui. The Mechanism of Syngas Conversion to Ethanol[J]. Acta Phys. -Chim. Sin., 1991, 7(06): 681-687.