Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (7): 1492-1498    DOI: 10.3866/PKU.WHXB201704141
ARTICLE     
Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation
Chi ZHANG1,2,Zhi-Jiao WU2,Jian-Jun LIU1,*(),Ling-Yu PIAO2,*()
1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
2 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
Download: HTML     PDF(1579KB) Export: BibTeX | EndNote (RIS)      

Abstract  

To study the activity of a composite photocatalyst for photocatalytic hydrogen production, we prepared and loaded MoS2 nanosheets with TiO2 nanoparticles using a hydrothermal method, thus forming a MoS2/TiO2 heterojunction composite catalyst. The structural and optical properties of the catalyst were characterized and analyzed by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray powder diffraction, UV-Vis absorption spectra, Raman spectroscopy, and X-ray photoelectron spectroscopy. The activity of the photocatalyst was evaluated by its photocatalytic hydrogen production rate. The corresponding MoS2 content of the catalyst was found to be 30%, and upon the exposure to 365nm UV light, a high photocatalytic hydrogen production rate of 1004 μmol-1·h-1·g-1 was obtained. The catalytic rate is much greater than that obtained with MoS2 or TiO2 catalysts. The high hydrogen production rate indicated that the use of a MoS2/TiO2 composite catalyst can significantly improve the UV-induced photocatalytic hydrogen production performance. Because of the excellent photocatalytic hydrogen production performance of the MoS2/TiO2 composite, we studied and analyzed the hydrogen production mechanism.



Key wordsTiO2      MoS2      Composite structure      Heterojunction      Photocatalytic hydrogen production     
Received: 16 January 2017      Published: 14 April 2017
MSC2000:  O649  
Fund:  the Ministry of Science and Technology of China(2016YFA0200900);the Ministry of Science and Technology of China(2016YFF0203803)
Corresponding Authors: Jian-Jun LIU,Ling-Yu PIAO     E-mail: 13611012376@163.com; ljj-717@163.com;piaoly@nanoctr.cn
Cite this article:

Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704141     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I7/1492

Fig 1 XRD patterns of as-prepared samples. (a) TiO2, (b) 5% (w) MoS2@TiO2, (c) 10% (w) MoS2@TiO2, (d) 30% (w) MoS2@TiO2, (e) 50% (w) MoS2@TiO2, (f) 70% (w) MoS2@TiO2, (g) MoS2.
Fig 2 Raman spectra of as-prepared samples.
Fig 3 SEM images of as-prepared samples. (a) MoS2, (b, c, d) MoS2/TiO2 (30% (w)).
Fig 4 TEM images of as-prepared samples. (a) MoS2, (b, c, d) MoS2/TiO2 (30% (w)).
Fig 5 UV-Vis spectra of as-prepared sample.
Fig 6 XPS spectra of MoS2/TiO2(30% (w)).
Fig 7 Hydrogen production rate of as-prepared samples.
Fig 8 Mechanism of photocatalytic reaction.
1 Balat M. International Journal of Hydrogen Energy. 2008, 33 (15), 4013.
2 Zheng J. Y. ; Zhang J. F. ; Chen L. X. ; W G. ; Gu C. H. ; Zhao Y. Z. ; Meng B. J.Saf. Environ. 2016, 16 (6), 144.
2 郑津洋; 张俊峰; 陈霖新; 王赓; 顾超华; 赵永志; 蒙波. 安全与环境学报, 2016, 16 (6), 144.
3 Bai S. ; Wang L. M. ; Chen X. Y. ; Du J. T. ; Xiong Y. J. Nano Res. 2015, 8 (1), 175.
4 Liu Y. M. ; Zhang W. G. ; Liang W. ; Wang H. X. ; Yu B. Rare Metal Mat. Eng. 2015, 44 (7), 1754.
4 刘一鸣; 张王刚; 梁伟; 王红霞; 余彬. 稀有金属材料与工程, 2015, 44 (7), 1754.
5 Yang J. H. ; Wang D. G. ; Han H. X. ; Li C. Acc. Chem. Res. 2013, 46 (8), 1900.
6 Gu P. C. ; Zhang K. L. ; Feng Y. L. ; Wang F. ; Miao Y. P. ; Han Y. M. ; Zhang H. X. Acta Phys. Sin. 2016, 65 (1), 18102.
6 顾品超; 张楷亮; 冯玉林; 王芳; 苗银萍; 韩叶梅;张韩霞. 物理学报, 2016, 65 (1), 18102.
7 Wang C. X. ; Lin H. H. ; Liu Z. Y. ; Wu J. P. ; Xu Z. Z. ; Zhang C. Part. Part. Syst. Charact. 2016, 33 (4), 221.
8 Wang X. ; Song L. ; Chen L. ; Song H. H. ; Zhang Y. P. Adv. Mater. Chem. 2015, 2 (4), 49.
8 王轩; 宋礼; 陈露; 宋欢欢; 张永平. 材料化学进展, 2015, 2 (4), 49.
9 Yuan Y. J. ; Ye Z. J. ; Lu H. W. ; Hu B. ; Li Y. H. ; Chen D. Q. ; Zhong J. S. ; Yu Z. T. ; Zou Z. G. ACS Catal. 2015, 6 (2), 532.
10 He H. Y. ; Lin J. H. ; Fu W. ; Wang X. L. ; Wang H. ; Zeng Q. S. ; Gu Q. ; Li Y. M. ; Yan C. ; Tay B. K. ; Xue C. ; Hu X. ; Liu Z. Adv. Energy Mater. 2016, 6 (14)
11 Zhou W. J. ; Yin Z. Y. ; Du Y. P. ; Huang X. ; Zeng Z. Y. ; Fan Z. X. ; Liu H. ; Wang J. Y. ; Zhang H. Small 2013, 9 (1), 140.
12 Wang J. ; Liu J. L. ; Chao D. L. ; Yan J. X. ; Lin J. Y. ; Shen Z. X. Adv. Mater. 2014, 26 (42), 7162.
13 Li Y. G. ; Wang H. L. ; Xie L. M. ; Liang Y. Y. ; Hong G. S. ; Dai H. Y. J.Am. Chem. Soc. 2011, 133 (19), 7296.
14 Zhang C.X. ; Zhang X. X. ; Tao H. J. Acta Phys. -Chim. Sin. 2014, 30 (10), 1963.
14 张传香; 张晓雪; 陶海军. 物理化学学报, 2014, 30 (10), 1963.
15 Tye C. T. ; Smith K. J. Catal. Today. 2006, 114 (4), 461.
16 Shen M. ; Yan Z. P. ; Yang L. ; Du P. W. ; Zhang J. Y. ; Xiang B. Chem. Commun. 2014, 50 (97), 15447.
17 Li H. D. ; Wang Y. ; Chen G. H. ; Sang Y. H. ; Jiang H. D. ; He J. T. ; Li X. ; Liu H. Nanoscale 2016, 8 (11), 6101.
18 Lin T. Z. ; Kang B. T. ; Jeon M. H. ; Huffman C. ; Jeon J. H. ; Lee S. J. ; Kim K. N. ACS Appl. Mater. Interfaces. 2015, 7 (29), 15892.
19 Ho W. K. ; Yu J. C. ; Lin J. ; Yu J. G. ; Li P. S. Langmuir 2004, 20 (14), 5865.
20 Li D. F. ; Zheng J. ; Chen X. Y. ; Zou Z. G. Prog. Chem. 2007, 19 (4), 464.
20 李敦钫; 郑菁; 陈新益; 邹志刚. 化学进展, 2007, 19 (4), 464.
21 Liu H. ; Lv T. ; Zhu C. K. ; Su X. ; Zhu Z. F. J.Mol. Catal. A: Chem. 2015, 396, 136.
22 Lee Y. H. ; Zhang X. Q. ; Zhang W. J. ; Chang M. T. ; Lin C. T. ; Chang K D. ; Li L. J. ; Lin T. W. Adv. Mater. 2012, 24 (17), 2320.
23 Chen Z. ; Cummins D. ; Reinecke B. N. ; Clark E. ; Sunkara M. K. ; Jaramillo T. F. Nano Lett. 2011, 11 (10), 4168.
24 Wang H. W. ; Skeldon P. ; Thompson G. E. Surf. Coat. Technol. 1997, 91 (3), 200.
25 Xie J. F. ; Zhang H. ; Li S. ; Wang R. X. ; Sun X. ; Zhou M. ; Zhou J. F. ; Xie Y. Adv. Mater. 2013, 25 (40), 5807.
26 Karunadasa H. I. ; Montalvo E. ; Sun Y. J. ; Majda M. ; Long J.R. ; Chang C. J. Science 2012, 335 (6069), 698.
27 Hinnemann B. ; Moses P. G. ; Bonde J. ; Jorgensen K. P. ; Nielsen J H. ; Horch S. ; Norskov J. K. J.Am. Chem. Soc. 2005, 127, 5308.
28 Chang K. ; Mei Z. W. ; Wang T. ; Kang Q. ; Ouyang S. X. ; Ye J. H. ACS Nano 2014, 8 (7), 7078.
29 Yan Y. ; Xia B. Y. ; Ge X. M. ; Liu Z. L. ; Wang J. Y. ; Wang X. ACS Appl. Mater. Interfaces 2013, 5, 12794.
30 Wang Y. ; Li G. ; Li P. W. ; Hu J. ; Zhao Q. H. Semicond Opt. 2016, No. 4, 461.
30 王毅; 李刚; 李朋伟; 胡杰;赵清华. 半导体光电, 2016, No. 4, 461.
[1] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 414-423.
[2] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[3] WANG Hui, ZOU De-Chun. Polyol-Mediated Synthesis of MoS2 Nanosheets Using Sulfur Powder as the Sulfur Source[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1027-1032.
[4] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[5] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 602-610.
[6] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2523-2531.
[7] . Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2532-2541.
[8] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2301-2309.
[9] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[10] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2042-2051.
[11] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[12] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[13] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (I): Surface Atom Identification[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2113-2118.
[14] MIAO Zhu, ZHANG Hai, YANG Hai-Rui. Atom Identification and Analysis of TiO2 Nanoparticles in the Heating and Sintering Process (II): The Sintered Neck[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2119-2124.
[15] LI Yue, ZHANG Ting-Ting, WANG Juan, ZHU Zhen, JIA Bing, YU Jiang. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2084-2092.