Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (8): 1589-1598    DOI: 10.3866/PKU.WHXB201704142
Nuclear Magnetic Resonance Characterization of Nano Self-Assembly γ-Al2O3 Pore Structure
Lin. WANG,Li-Zhi. XIAO*(),Long. GUO,Guang-Zhi. LIAO,Yan. ZHANG,Ge. GE
Download: HTML     PDF(2833KB) Export: BibTeX | EndNote (RIS)      


Nano self-assembled γ-Al2O3, having two kinds of nano-scale pore structures, which can be used as a catalyst carrier suitable for large molecule diffusion and shale gas reservoir models. Characterization of the pore structures in nanomaterials are scanning electron microscopy, nitrogen adsorption method, mercury injection method, etc. These characterization techniques have their own limitations. This paper utilized nuclear magnetic resonance (NMR) relaxation measurements to study and quantitatively characterize the pore structures of nano self-assembled γ-Al2O3. Random walker simulation and error function analysis were used to explore the surface relaxation strength and pore size distribution of nano self-assembled γ-Al2O3. The random walker simulation results show that the main apertures of nano self-assembled γ-Al2O3 are 5-7 nm and 30-42 nm; NMR experiments through error function analysis show that the main apertures of the nano self-assembled material are 5-9 nm and 29-47 nm. Nitrogen adsorption only characterized the microporous, mesoporous, and part of the macroporous structures. The pore diameters greater than 100 nm cannot be detected by the nitrogen adsorption method. The mercury injection method characterizes apertures of size less than 10 nm relatively inaccurately. Nuclear magnetic relaxation can comprehensively characterize bimodal pore system of nano self-assembled γ-Al2O3 of size 2.8-315 nm. As one of the NMR measurements, the T2 spectrum signal amplitude ratio of three samples, S-1, S-2 and S-3 are 0.603, 1.15, 1.84, directly reflect the variety of their micropores and mesopores chemical Al2O3 material ratio 0.85, 1.38, 1.7 respectively. The suggested method can be applied to the investigation for shale gas pore structure and associated mechanisms.

Key wordsPore distribution      Nuclear magnetic relaxation      Radom walker      Error function analysis      Nano self-assambly     
Received: 01 March 2017      Published: 14 April 2017
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(21427812);and the "111 Project" Discipline Innovative Engineering Plan, China(B13010)
Corresponding Authors: Li-Zhi. XIAO     E-mail:;
Cite this article:

Lin. WANG, Li-Zhi. XIAO, Long. GUO, Guang-Zhi. LIAO, Yan. ZHANG, Ge. GE. Nuclear Magnetic Resonance Characterization of Nano Self-Assembly γ-Al2O3 Pore Structure. Acta Physico-Chimica Sinca, 2017, 33(8): 1589-1598.

URL:     OR

Fig 1 Nano self-assambly γ-Al2O3 appearance SEM.
Fig 2 Samples nitrogen adsorption-desorption curves and nitrogen adsorption pore distribution. (a) Samples nitrogen adsorption-desorption curves. (b) Samples nitrogen adsorption pore distribution.
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm39.314.825
< 15 nm54.239.150.7
15-20 nm6.619.39.6
20-30 nm1118.712.9
30-60 nm21.819.721.2
60-100 nm635.6
Table 1 Comparison of nitrogen adsorption porosity.
Fig 3 Samples mercury pressure-saturation curves and mercury injection pore distribution. (a) samples mercury pressure-saturation curves; (b) samples mercury injection pore distribution.
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm18.261316.5
< 15 nm28.232.4736.18
15?20 nm6.917.9312.8
20?30 nm21.7422.3431.64
30?60 nm3323.0213.49
60?100 nm6.4214.245.86
Table 2 Comparison of mercury injection porosity.
Fig 4 Samples T2 interval porosity and cumulative porosity.
Fig 5 Construct pore distribution curves. (a) S-1, (b) S-2, (c) S-3.
Fig 6 Error function analysis. (a) error analysis determine C; (b) C comparison of S-2 T2 and constructed pore distribution cumulative curves.
Fig 7 Error function analysis nuclear magnetic pore distribution.
Fig 8 Nano self-assambly γ-Al2O3 simulation model.
Fig 9 Comparison T2 simulation and experiment. (a) S-1, (b) S-2, (c) S-3.
Fig 10 Simulation nuclear magnetic pore distribution.
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm21.431.448.3
< 15 nm38.0445.758.3
15-20 nm15.026.65.5
20-30 nm27.3910.3
30-60 nm19.51917.9
60-100 nm0128.3
Table 3 Comparison of NMR porosity
Fig 11 NMR, nitrogen adsorption and mercury injection pore distribution comparison.
1 Vartuli J. C. ; Kresge C. T. ; Leonowicz M. E. ; Chu A. S. ; McCullen S. B. ; Johnson I. D. ; Sheppard E. W. Chem. Mater. 1994, 6, 2070.
2 Beck J. S. ; Vartuli J. C. ; Roth W. J. ; Leonowicz M. E. ; Kresge C. T. ; Schmitt K. D. ; Chu C. T-W. ; Olson D. H. ; Sheppard E. W. ; McCullen S. B. ; Higgins J. B. ; Schlenker J. L. J. Am. Chem. Soc. 1992, 114, 10834.
3 Imhof A. ; Pine D. J. Nature. 1997, 389, 948.
4 Kresge C. T. ; Leonowicz M. E. ; Roth W. J. ; Vartuli J. C. ; Beck J. S. Nature 1992, 356, 710.
5 Zeng S. Petrol. Refin. Eng. 2011, 41, 39.
5 曾松.. 炼油技术与工程, 2011, 41, 39.
6 Javadpour F. J. Can. Pet. Technol. 2009, 48, 16.
7 Javadpour F. ; Fisher D. ; Unsworth M. J. Can. Pet. Technol. 2007, 46, 55.
8 Zolfaghari, A.; Dehghanpour, H. A Comparative Study of Pore Size Distribution in Gas Shales. In Society of Petroleum Engineers, SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, November 9-11, 1-14
9 Elgmati, M. Shale Gas Rock Characterization and 3D Submicron Pore Network Reconstruction. M. S. Dissertation, Missouri University of Science and Technology, Missouri, 2011.
10 Loucks R. G. ; Reed R. M. ; Ruppel S. C. ; Jarvie D. M. J. Sediment. Res. 2009, 79, 848.
11 Chen S. B. ; Zhu Y. M. ; Wang H. Y. ; Liu H. L. ; Wei W. ; Fang J. H. J. China. Coal. Soc. 2012, 3, 438.
11 陈尚斌.; 朱炎铭.; 王红岩.; 刘洪林.; 魏伟.; 方俊华.. 煤炭学报, 2012, 3, 438.
12 Chalmers G. R. ; Bustin R. M. ; Power I. M. AAPG Bull. 2012, 96, 1099.
13 Rouquerol J. ; Avnir D. ; Fairbridge C. W. ; Everett D. H. ; Haynes J. H. ; Pernicone N. ; Ramsay J. D. F. ; Sing K. S. W. ; Unger K. K. Pure Appl. Chem. 1994, 66, 1739.
14 Li J. X. ; Zhang L. X. ; Yang L. Mineralogy and Petrology Chengdu: The University of Electronic Science and Technology Press, 2014, pp 50- 170.
14 李景霞.; 张立新.; 杨丽.矿物岩石学.. 矿物岩石学, 成都: 电子科技大学出版社, 2014, 50- 170.
15 Xiao, L. Z.; Coates, G. R.; Prammer, M. G. NMR Logging Principles and Applications. Gulf Publishing Company: Houston, 1999; pp 10-200.
16 Tiumer A. J. Pet. Technol. 1969, 21, 775.
17 Kenyon W. E. ; Day P. I. ; Straley C. ; Willemsen J. F. SPE Form. Eval. 1988, 3, 622.
18 Gallegos D. P. ; Smith D. M. J. Colloid Interface Sci. 1988, 122, 143.
19 Straley, C.; Morriss, C. E.; Kenyon, W. E.; Howard, J. J. NMR in Partially Saturated Rocks: Laboratory Insights on Free Fluid Index and Comparison with Borehole Logs. In Society of Petrophysicists and Well-Log Analysts, SPWLA 32nd Annual Logging Symposium, Midland, Texas, June 16-19, 1991, 143-153
20 Sigal R. F. ; Odusina E. Petrophysics. 2010, 52, 32.
21 Hinai A. A. ; Rezaee R. ; Esteban L. ; Labani M. J. Unconvent. Oil Gas Resources 2014, 8, 13.
22 Wang D. C. Sci. China Ser. B-Chem. 2009, 52, 2114.
23 Straley C. ; Rossini D. ; Vinegar H. ; Tutunjian P. ; Morriss C. Log Anal. 1997, 38, 84.
24 Kleinberg R. L. ; Vinegar H. J. Log Anal. 1996, 37 (6), 20.
25 Liu T. Y. ; Xiao L. Z. ; Fu R. S. Chin. J. Geophys.-Chin. Ed. 2004, 47, 663.
25 刘堂晏.; 肖立志.; 傅容珊.. 地球物理学报, 2004, 47, 663.
26 Martin, P.; Dacy, J. Effective Qv by NMR Core Tests. In Society of Petrophysicists and Well-Log Analysts, SPWLA 45th Annual Logging Symposium, Noordwijk, Netherlands, June 6-9, 2004, 1-14
27 Toumelin E. ; Torres-Verdin C. ; Sun B. Q. ; Dunn K J. J. Magn. Reson. 2007, 188, 83.
28 Toumelin E. ; Torres-Verdin C. ; Chen S. SPE Reserv. Eval. Eng. 2003, 6, 234.
29 Carneiro, G.; Souza, A.; Boyd, A.; Schwartz, L.; Song, Y. Q.; Azeredo, R.; Trevizan, W.; Santos, B.; Rios, E.; Machado, V. Evaluating Pore Space Connectivity by NMR Diffusive Coupling. In Society of Petrophysicists and Well-Log Analysts, SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 18-22, 2014, 1-7.
[1] Liu Xin-Mei;Yan Zi-Feng;Wang Huai-Ping. Optimization of Zeolite for Producing Lighter Olefin and Diesel in FCC Process[J]. Acta Physico-Chimica Sinca, 2001, 17(06): 547-551.