Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (7): 1366-1378    DOI: 10.3866/PKU.WHXB201704173
REVIEW     
Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions
Xiao ZHAI1,3,Yi DING2,3,*()
1 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
2 Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
3 Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin 300384, P. R. China
Download: HTML     PDF(6492KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Fuel cells allow the direct conversion of the chemical energy in chemical fuels to electricity, with particular advantages of being highly effective, environment-friendly, and portable. For those fuel cells using oxygen or air as the oxidant, the oxygen reduction reaction (ORR) occurring on the cathode remains the major obstacle for the commercialization of fuel cell technologies because of its slow kinetics, which in turn results in relatively low catalytic efficiency and high price due to excessive use of precious metals like Pt. In recent years, dealloyed nanoporous metals have garnered widespread attention in the field of electrocatalysis due to their unique structural properties, such as three-dimensionally interconnected pore/ligament structure, excellent conductivity, and structural flexibility. This review summarizes the recent advances in nanoporous metal catalysts for ORR, with an emphasis on their unique structural properties for the development of new-generation high-performance fuel cell catalysts.



Key wordsNanoporous metal      Dealloying      Fuel cell      Oxygen reduction reaction      Low Pt catalyst     
Received: 20 February 2017      Published: 17 April 2017
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(51671145)
Corresponding Authors: Yi DING     E-mail: yding@tjut.edu.cn
Cite this article:

Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704173     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I7/1366

Fig 1 Typical methods for the synthesis of core-shell structured Pt-electrocatalysts30.
Fig 2 Schematic illustration of the fabrication process of nanoporous metals by dealloying.
Fig 3 (a-c) SEM images of nanoporous gold (NPG) with different pore sizes; (d) TEM61 and (e-f) HRTEMimage62, 63 of NPG.
Fig 4 (a) 3D skeletal network of NPG imaged by electron tomography64; (b) Normalized area fractions plotted against radius of curvature of gold ligaments66; (c) The reconstructed 3D atomic configuration of an NPG ligament. The color indicates the surface atoms with different coordination number. (d) Schematic truncated octahedral gold nanoparticle (TOP); (e) fractions of surface atoms with CNx (x=5-9) out of the total surface atoms of NPG/TOP with different feature sizes67.
Fig 5 (a-c) Various alloy precursors; (d-e) the resulted nanoporous metal membranes and chunkssup46, 73.
Fig 6 (a) TEM and (b) HRTEM images of PtNi alloy nanoparticles, (c) HRTEM image of nanopo-rousPtNi alloy nanoparticles78; (d) iR-Free ORR kinetic activity parameters for dealloyedPtNi catalysts and 30% (w) Pt/C81.
Fig 7 (a) Schematic illustration of the fabrication process of nanoporous PtNi surface alloy catalyst; (b) ORR polarization curves and (c) ECSA and Pt mass specific kinetic current densities at 0.9 V (vs RHE) for nanoporous PtNi and Pt/C86.
Fig 8 (a) SEM image of Pt3Al/Pt and pore size distribution (inset); (b) HAADF-STEM images of Pt3Al with super lattice feature and simulated atomic model; (c) ORR polarization curves of Pt3Al/Pt/C and Pt/ C; (d) Comparison of specific kinetic activity for Pt3Al/Pt/C and Pt/C.
Fig 9 (a) ORR polarization curves and (b) Tafel plots of np-Ag, Pt/C, and bulk Ag; (c) ORR curves and correspondingTafel plots of np-Ag before and after 5000 potential (inset)104.
Fig 10 Dealloying allows customized design and fabrication of various hierarchically porous electrode materials, such as (a) multimodal porosity; (b) layer structure; (c) gradient porosity; (d) porous nanot ubes71, 106; (e) porousnanocapsules; (f, g) porous nanowires and arrays107.
1 Brandon N. P. ; Skinner S. ; Steele B. C. H. Annu. Rev. Mater. Res. 2003, 33 (1), 183.
2 Steele B. C. H. ; Heinzel A. Nature 2001, 414 (6861), 345.
3 Carrette L. ; Friedrich K. A. ; Stimming U. ChemPhysChem 2000, 1 (4), 162.
4 http://www.chinabaike.com/z/keji/ck/528495.html (accessed Dec 28, 2016).
5 Wagner F. T. ; Lakshmanan B. ; Mathias M. F. J. Phys. Chem. Lett. 2010, 1 (14), 2204.
6 Bondarenko A. S. ; Stephens I. E. L. ; Hansen H. A. ; Perez-Alonso F.J. ; Tripkovic V. ; Johansson T. P. ; Rossmeisl J. ; Norskov J. K. ; Chorkendorff I. Langmuir 2011, 27 (5), 2058.
7 Markovic N. M. ; Schmidt T. J. ; Stamenkovic V. ; Ross P. N. Fuel Cells 2001, 1 (2), 105.
8 Xia Z. H. ; An L. ; Chen P. K. ; Xia D. G. Adv. Eng. Mater. 2016, 6 (17), 1600458.
9 Xia W. ; Mahmood A. ; Liang Z. B. ; Zou R. Q. ; Guo S. J. Angew. Chem. Int. Ed. 2016, 55 (8), 2650.
10 Raj C. R. ; Samanta A. ; Noh S. H. ; Mondal S. ; Okajima T. ; Ohsaka T. J. Mater. Chem. A 2016, 4 (29), 11156.
11 Liu Y. Y. ; Yue X. P. ; Li K. X. ; Qiao J. L. ; Wilkinson D. P. ; Zhang J. J. Coord. Chem. Rev. 2016, 315, 153.
12 Greeley J. ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T. P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J. ; Chorkendorff I. ; Norskov J. K. Nat. Chem. 2009, 1 (7), 552.
13 Gewirth A. A. ; Thorum M. S. Inorg. Chem. 2010, 49 (8), 3557.
14 Gasteiger H. A. ; Kocha S. S. ; Sompalli B. ; Wagner F. T. Appl. Catal., B 2005, 56 (1-2), 9.
15 Stephens I. E. L. ; Bondarenko A. S. ; Gronbjerg U. ; Rossmeisl J. ; Chorkendorff I. Energy Environ. Sci. 2012, 5 (5), 6744.
16 Zhu C. Z. ; Li H. ; Fu S. F. ; Du D. ; Lin Y. H. Chem. Soc. Rev. 2016, 45 (3), 517.
17 Zhou M. ; Wang H. L. ; Guo S. J. Chem. Soc. Rev. 2016, 45 (5), 1273.
18 Gao M. R. ; Jiang J. ; Yu S. H. Small 2012, 8 (1), 13.
19 Shahgaldi S. ; Hamelin J. Carbon 2015, 94, 705.
20 Sakaushi K. ; Antonietti M. Acc. Chem. Res. 2015, 48 (6), 1591.
21 Nie Y. ; Li L. ; Wei Z. D. Chem. Soc. Rev. 2015, 44 (8), 2168.
22 Bashyam R. ; Zelenay P. Nature 2006, 443 (7107), 63.
23 Peng S. ; Guo H. L. ; Kang X. F. Acta Phys. -Chim. Sin. 2014, 30, 1778.
23 彭三; 郭慧林; 亢晓峰. 物理化学学报, 2014, 30, 1778.
24 Stoerzinger K. A. ; Risch M. ; Han B. H. ; Shao-Horn Y. ACS Catal. 2015, 5 (10), 6021.
25 Sun S. H. ; Yang D. Q. ; Villers D. ; Zhang G. X. ; Sacher E. ; Dodelet J. P. Adv. Mater. 2008, 20 (3), 571.
26 Cheng F. Y. ; Su Y. ; Liang J. ; Tao Z. L. ; Chen J. Chem. Mater. 2010, 22 (3), 898.
27 Sun J. Z. ; Shi J. ; Xu J. L. ; Chen X. T. ; Zhang Z. H. ; Peng Z. Q. J. Power Sources 2015, 279 (17), 334.
28 Chen Z. ; Waje M. ; Li W. ; Yan Y. Angew. Chem. Int. Ed. 2007, 46 (22), 4060.
29 Chen C. ; Kang Y. J. ; Huo Z. Y. ; Zhu Z. W. ; Huang W. Y. ; Xin H. L.L. ; Snyder J. D. ; Li D. G. ; Herron J. A. ; Mavrikakis M. ; Chi M. F. ; More K. L. ; Li Y. D. ; Markovic N. M. ; Somorjai G. A. ; Yang P. D. ; Stamenkovic V. R. Science 2014, 343 (6177), 1339.
30 Yang H. Angew. Chem. Int. Ed. 2011, 50 (12), 2674.
31 Stamenkovic V. ; Mun B. S. ; Mayrhofer K. J. J. ; Ross P. N. ; Markovic N. M. ; Rossmeisl J. ; Greeley J. ; Norskov J. K. Angew. Chem. Int. Ed. 2006, 45 (18), 2897.
32 Paulus U. A. ; Wokaun A. ; Scherer G. G. ; Schmidt T. J. ; Stamenkovic V. ; Markovic N. M. ; Ross P. N. Electrochim. Acta 2002, 47 (22-23), 3787.
33 Yang R. Z. ; Leisch J. ; Strasser P. ; Toney M. F. Chem. Mater. 2010, 22 (16), 4712.
34 Wang C. ; Waje M. ; Wang X. ; Tang J. M. ; Haddon R. C. ; Yan Y. S. Nano Lett. 2004, 4 (2), 345.
35 Erlebacher J. ; Aziz M. J. ; Karma A. ; Dimitrov N. ; Sieradzki K. Nature 2001, 410 (6827), 450.
36 Meng F. H. ; Ding Y. Adv. Mater. 2011, 23 (35), 4098.
37 Wang R. ; Liu J. ; Liu P. ; Bi X. ; Yan X. ; Wang W. ; Ge X. ; Chen M. ; Ding Y. Chem. Sci. 2014, 5 (1), 403.
38 Wang R. ; Liu J. ; Liu P. ; Bi X. ; Yan X. ; Wang W. ; Meng Y. ; Ge X. ; Chen M. ; Ding Y. Nano Research 2014, 7 (11), 1569.
39 Xiong W. H. ; Zhang W. C. ; Yu C. P. ; Shen R. Q. ; Cheng J. ; Ye J. H. ; Qin Z. C. Acta Phys. -Chim. Sin. 2016, 32, 2093.
39 熊文慧; 张文超; 俞春培; 沈瑞琪; 程佳; 叶家海; 秦志春. 物理化学学报,, 2016, 32, 2093.
40 Nishio K. ; Masuda H. Angew. Chem. Int. Ed. 2011, 50 (7), 1603.
41 Naeth O. ; Stephen A. ; Roesler J. ; Vollertsen F. J. Mater. Process. Technol. 2009, 209 (10), 4739.
42 Tappan B. C. ; Steiner S. A. ; Luther E. P. Angew. Chem. Int. Ed. 2010, 49 (27), 4544.
43 Guo X. Z. ; Ding L. ; Yu H. ; Shan J. Q. ; Yang H. Acta Phys. -Chim. Sin. 2016, 32, 1727.
43 郭兴忠; 丁力; 于欢; 单加琪; 杨辉. 物理化学学报, 2016, 32, 1727.
44 Nie L. H. ; Tan Q. ; Zhu W. ; Wei Q. ; Lin Z. K. Acta Phys. -Chim. Sin. 2015, 31, 1815.
44 聂龙辉; 谭侨; 朱玮; 魏琪; 林志奎. 物理化学学报, 2015, 31, 1815.
45 Erlebacher J. J. Electrochem. Soc. 2004, 151 (10), C614.
46 Zhang Z. H. ; Wang Y. ; Qi Z. ; Zhang W. H. ; Qin J. Y. ; Frenzel J. J. Phys. Chem. C 2009, 113 (29), 12629.
47 Yeh F. H. ; Tai C. C. ; Huang J. F. ; Sun I. W. J. Phys. Chem. B 2006, 110 (11), 5215.
48 Lei W. ; Briot N. J. ; Swartzentruber P. D. ; Balk T. J. Metall. Mater. Trans. A 2014, 45 (1), 1.
49 Hayes J. R. ; Hodge A. M. ; Biener J. ; Hamza A. V. ; Sieradzki K. J. Mater. Res. 2006, 21 (10), 2611.
50 Renner F. U. ; Stierle A. ; Dosch H. ; Kolb D. M. ; Lee T. L. ; Zegenhagen J. Nature 2006, 439 (7077), 707.
51 Chen L. Y. ; Chen N. ; Hou Y. ; Wang Z. C. ; Lv S. H. ; Fujita T. ; Jiang J. H. ; Hirata A. ; Chen M. W. ACS Catal. 2013, 3 (6), 1220.
52 Xu C. X. ; Su J. X. ; Xu X. H. ; Liu P. P. ; Zhao H. J. ; Tian F. ; Ding Y. J. Am. Chem. Soc. 2007, 129 (1), 42.
53 Liu W. ; Herrmann A. K. ; Bigall N. C. ; Rodriguez P. ; Wen D. ; Oezaslan M. ; Schmidt T. J. ; Gaponik N. ; Eychmuller A. Acc. Chem. Res. 2015, 48 (2), 154.
54 Geng D. S. ; Ding N. ; Hor T. S. A. ; Liu Z. L. ; Sun X. L. ; Zong Y. J. Mater. Chem. A 2015, 3 (5), 1795.
55 Qi Z. ; Weissmüller J. ACS Nano 2013, 7 (7), 5948.
56 Gan L. ; Heggen M. ; O'Malley R. ; Theobald B. ; Strasser P. Nano Lett. 2013, 13 (3), 1131.
57 Cheng I. C. ; Hodge A. M. J. Porous Mater. 2014, 21 (4), 467.
58 Cahn J. W. Acta Metall. 1961, 9 (9), 795.
59 Park M. ; Harrison C. ; Chaikin P. M. ; Register R. A. ; Adamson D. H. Science 1997, 276 (5317), 1401.
60 Fukutani K. ; Tanji K. ; Motoi T. ; Den T. Adv. Mater. 2004, 16 (16), 1456.
61 Ding Y. ; Chen M. W. MRS Bull. 2009, 34 (8), 569.
62 Ding Y. ; Chen M. ; Erlebacher J. J. Am. Chem. Soc. 2004, 126 (22), 6876.
63 Fujita T. ; Tokunaga T. ; Zhang L. ; Li D. ; Chen L. ; Arai S. ; Yamamoto Y. ; Hirata A. ; Tanaka N. ; Ding Y. Nano Lett. 2014, 14 (3), 1172.
64 Fujita T. ; Okada H. ; Koyama K. ; Watanabe K. ; Maekawa S. ; Chen M. W. Phys. Rev. Lett. 2008, 101 (16), 166601.
65 Xia R. ; Wang J. L. ; Wang R. Y. ; Li X. D. ; Zhang X. ; Feng X. Q. ; Ding Y. Nanotechnology 2010, 21 (8), 085703.
66 Fujita T. ; Qian L. H. ; Inoke K. ; Erlebacher J. ; Chen M. W. Appl. Phys. Lett. 2008, 92 (25), 251902.
67 Liu P. ; Guan P. ; Hirata A. ; Zhang L. ; Chen L. ; Wen Y. ; Ding Y. ; Fujita T. ; Erlebacher J. ; Chen M. Adv. Mater. 2016, 28 (9), 1753.
68 R?sner H. ; Parida S. ; Kramer D. ; Volkert C. A. ; Weissmüller J. Adv. Eng. Mater. 2007, 9 (7), 535.
69 Pia G. ; Brun M. ; Aymerich F. ; Delogu F. J. Mater. Sci. 2017, 52 (2), 1106.
70 Zhang X. ; Ding Y. Catal. Sci. Technol. 2013, 3 (11), 2862.
71 Gu X. H. ; Xu L. Q. ; Tian F. ; Ding Y. Nano Res. 2009, 2 (5), 386.
72 Yan X. J. ; Xiong H. Y. ; Bai Q. G. ; Frenzel J. ; Si C. H. ; Chen X. T. ; Eggeler G. ; Zhang Z. H. RSC Adv. 2015, 5 (25), 19409.
73 Ding Y. ; Kim Y. J. ; Erlebacher J. Adv. Mater. 2004, 16 (21), 1897.
74 Norskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J.R. ; Bligaard T. ; Jonsson H. J. Phys. Chem. B 2004, 108 (46), 17886.
75 Zhang J. L. ; Vukmirovic M. B. ; Sasaki K. ; Nilekar A. U. ; Mavrikakis M. ; Adzic R. R. J. Am. Chem. Soc. 2005, 127 (36), 12480.
76 Koh S. ; Strasser P. J. Am. Chem. Soc. 2007, 129 (42), 12624.
77 Srivastava R. ; Mani P. ; Hahn N. ; Strasser P. Angew. Chem. Int. Ed. 2007, 46 (47), 8988.
78 Wang D. ; Zhao P. ; Li Y. Sci. Rep. 2011, 1 (7), 37.
79 Oezaslan M. ; Heggen M. ; Strasser P. J. Am. Chem. Soc. 2012, 134 (1), 514.
80 Li X. ; Chen Q. ; Mccue I. ; Snyder J. ; Crozier P. ; Erlebacher J. ; Sieradzki K. Nano Lett. 2014, 14 (5), 2569.
81 Snyder J. ; McCue I. ; Livi K. ; Erlebacher J. J. Am. Chem. Soc. 2012, 134 (20), 8633.
82 Baldizzone C. ; Gan L. ; Hodnik N. ; Keeley G. P. ; Kostka A. ; Heggen M. ; Strasser P. ; Mayrhofer K. J. J. ACS Catal. 2015, 5 (9), 5000.
83 Snyder J. ; Fujita T. ; Chen M. W. ; Erlebacher J. Nat. Mater. 2010, 9 (11), 904.
84 Benn E. ; Uvegi H. ; Erlebacher J. J. Electrochem. Soc. 2015, 162 (10), H759.
85 Snyder J. ; Livi K. ; Erlebacher J. Adv. Funct. Mater. 2013, 23 (44), 5494.
86 Wang R. Y. ; Xu C. X. ; Bi X. X. ; Ding Y. Energy Environ. Sci. 2012, 5 (1), 5281.
87 Duan H. M. ; Xu C. X. Electrochim. Acta 2015, 152, 417.
88 Duan H. M. ; Hao Q. ; Xu C. X. J. Power Sources 2015, 280, 483.
89 Xu C. X. ; Zhang H. ; Hao Q. ; Duan H. M. ChemPlusChem 2014, 79 (1), 107.
90 Han B. H. ; Xu C. X. Int. J. Hydrogen Energy 2014, 39 (32), 18247.
91 Chen X. T. ; Jiang Y. Y. ; Sun J. Z. ; Jin C. H. ; Zhang Z. H. J. Power Sources 2014, 267 (4), 212.
92 Zhang Z. H. ; Wang Y. ; Wang X. G. Nanoscale 2011, 3 (4), 1663.
93 Zhang Z. H. ; Zhang C. ; Sun J. Z. ; Kou T. Y. ; Bai Q. G. ; Wang Y. ; Ding Y. J. Mater. Chem. A 2013, 1 (11), 3620.
94 Lang X. Y. ; Han G. F. ; Xiao B. B. ; Gu L. ; Yang Z. Z. ; Wen Z. ; Zhu Y. F. ; Zhao M. ; Li J. C. ; Jiang Q. Adv. Funct. Mater. 2015, 25 (2), 230.
95 Zeis R. ; Lei T. ; Sieradzki K. ; Snyder J. ; Erlebacher J. J. Catal. 2008, 253 (1), 132.
96 Shao M. J. Power Sources 2011, 196 (5), 2433.
97 Xu C. X. ; Zhang Y. ; Wang L. Q. ; Xu L. Q. ; Bian X. F. ; Ma H. Y. ; Ding Y. Chem. Mater. 2009, 21 (14), 3110.
98 Xu C. X. ; Wang L. Q. ; Wang R. Y. ; Wang K. ; Zhang Y. ; Tian F. ; Ding Y. Adv. Mater. 2009, 21 (21), 2165.
99 Zhang H. ; Hao Q. ; Geng H. R. ; Xu C. X. Int. J. Hydrogen Energy 2013, 38 (24), 10029.
100 Yang R. Z. ; Bian W. Y. ; Strasser P. ; Toney M. F. J. Power Sources 2013, 222 (2), 169.
101 Xu C. ; Liu Y. ; Zhang H. ; Geng H. Chem. -Asian J. 2013, 8 (11), 2721.
102 Xu C. X. ; Liu Y. Q. ; Hao Q. ; Duan H. M. J. Mater. Chem. A 2013, 1 (43), 13542.
103 Liu Y. ; Xu C. ChemSusChem 2013, 6 (1), 78.
104 Zhou Y. ; Lu Q. ; Zhuang Z. B. ; Hutchings G. S. ; Kattel S. ; Yan Y.S. ; Chen J. G. ; Xiao J. Q. ; Jiao F. Adv. Eng. Mater. 2015, 5 (13), 1500149.
105 Xu C. X. ; Li Y. Y. ; Tian F. ; Ding Y. ChemPhysChem 2010, 11 (15), 3320.
106 Gu X. ; Cong X. ; Ding Y. ChemPhysChem 2010, 11 (4), 841.
107 Chen B. ; Meng G. W. ; Huang Q. ; Huang Z. L. ; Xu Q. L. ; Zhu C.H. ; Qian Y. W. ; Ding Y. ACS Appl Mater Inter 2014, 6 (18), 15667.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1811-1821.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[5] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.
[6] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[7] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[8] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[9] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 386-392.
[10] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 370-376.
[11] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[12] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[13] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2171-2184.
[14] LU Shan-Fu, PENG Si-Kan, XIANG Yan. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1859-1865.
[15] MAI Jun-Lin, SUN De-Lin, QUAN Xue-Bo, LI Li-Bo, ZHOU Jian. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1649-1657.