Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (8): 1715-1720    DOI: 10.3866/PKU.WHXB201704174
ARTICLE     
Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent
Guo-Min LI1,Bao-Shun ZHU1,Li-Ping LIANG1,Yu-Ming TIAN1,*(),Bao-Liang LÜ2,Lian-Cheng WANG2,*()
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China
2 Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
Download: HTML     PDF(1992KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

To reduce the density of the absorbent Co3Fe7, a core-shell Co3Fe7@C microwave absorbent was synthesized by preparing an iron/cobalt-containing carbon precursor followed by high-temperature carbonization. According to the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results, Co3Fe7 particles were coated with graphitized carbon layers to form a core-shell structure. Furthermore, the Co3Fe7@C composite with a surface area and density of 358.5 m2·g-1 and 2.25 g·cm-3, respectively, exhibited excellent microwave absorbability. A minimum reflection loss (RL) of -43.5 dB and an effective bandwidth (RL below -10 dB) of 4.1 GHz were obtained at the coating thickness of 2 mm, which could be mainly attributed to the effective impedance match and multiple interfacial polarizations. Owing to the low density and remarkable microwave absorption, we believe that the Co3Fe7@C composite can be a promising candidate for use as a lightweight and efficient microwave absorbent.



Key wordsCore-shell structure      Composite      Lightweight      Microwave absorption     
Received: 06 December 2016      Published: 17 April 2017
MSC2000:  O64  
  TQ050.4+3  
Fund:  The project was supported by the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology, China(20152030)
Corresponding Authors: Yu-Ming TIAN,Lian-Cheng WANG     E-mail: tym1654@126.com;wanglc@sxicc.ac.cn
Cite this article:

Guo-Min LI,Bao-Shun ZHU,Li-Ping LIANG,Yu-Ming TIAN,Bao-Liang LÜ,Lian-Cheng WANG. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent. Acta Phys. -Chim. Sin., 2017, 33(8): 1715-1720.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704174     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I8/1715

 
 
 
 
SampleFilling rate/% (w)Effective bandwidth/GHzCoating thickness/mmRef.
FeCo-CF303.91.322
CoNi-C504.12.523
Fe2O3-MWNTs/PBO303.23.024
Co3O4@C@PGC503.92.111
Fe2O3@CoFe2O4505.02.025
CoFe2O4-Co3Fe7675.21.326
FeCo-CFs203.11.327
Co3Fe7@C154.12this work
 
 
 
 
1 Liu J. W. ; Che R. C. ; Chen H. J. ; Zhang F. ; Xia F. ; Wu Q. S. ; Wang M. Small 2012, 8, 1214.
2 Sun G. B. ; Dong B. X. ; Cao M. H. ; Wei B. Q. ; Hu C. W. Chem. Mater. 2011, 23, 1587.
3 Che R. C. ; Peng L. M. ; Duan X. F. ; Chen Q. ; Liang X. L. Adv. Mater. 2004, 16, 401.
4 Zhang S. L. ; Jiao Q. Z. ; Zhao Y. ; Li H. S. ; Wu Q. J. Mater. Chem. A 2014, 2, 18033.
5 Ohlan A. ; Singh K. ; Chandra A. ; Dhawan S. K. ACS Appl. Mater. Interfaces 2010, 2, 927.
6 Pan G. H. ; Zhu J. ; Ma S. L. ; Sun G. B. ; Yang X. J. ACS Appl. Mater. Interfaces 2013, 5, 12716.
7 Chen Y. H. ; Huang Z. H. ; Lu M. M. ; Cao W. Q. ; Yuan J. ; Zhang D.Q. ; Cao M. S. J. Mater. Chem. A 2015, 3, 12621.
8 Bai X. ; Zhai Y. H. ; Zhang. Y. J. Phys. Chem. C 2011, 115, 11673.
9 Li G. M. ; Wang L. C. ; Li W. X. ; Ding R. M. ; Xu Y. Phys. Chem. Chem. Phys. 2014, 16, 12390.
10 Wang Z. J. ; Wu L. N. ; Zhou J. G. ; Shen B. Z. ; Jiang Z. H. J. Phys. Chem. C 2013, 117, 5446.
11 Wen F. S. ; Hou H. ; Xiang J. Y. ; Zhang X. Y. ; Su Z. B. ; Yuan S. J. ; Liu Z. Y. Carbon 2015, 89, 372.
12 Liu X. G. ; Li B. ; Geng D. Y. ; Cui W. B. ; Yang F. ; Xie Z. G. ; Kang D. J. ; Zhang Z. D. Carbon 2009, 47, 470.
13 Wang G. Z. ; Gao Z. ; Wan G. P. ; Lin S. W. ; Yang P. ; Qin Y. Nano Res. 2014, 7, 704.
14 Li X. H. ; Feng J. ; Du Y. P. ; Bai J. T. ; Fan H. M. ; Zhang H.L. ; Peng Y. ; Li F. S. J. Mater. Chem. A 2015, 3, 5535.
15 Li G. M. ; Wang L. C. ; Li W. X. ; Xu Y. Micropor. Mesopor. Mater. 2015, 21, 197.
16 Wang S. L. ; Huang X. L. ; He Y. H. ; Huang H. ; Wu Y. Q. ; Hou L. Z. ; Liu X. L. ; Yang T. M. ; Zou J. ; Huang H. Y. Carbon 2012, 50, 2119.
17 Li W. X. ; Wang L. C. ; Li G. M. ; Xu Y. Mate. Chem. Phys. 2015, 163, 431.
18 Wen Z. H. ; Ci S. Q. ; Zhang F. ; Feng X. L. ; Cui S. M. ; Luo S.L. ; He Z. ; Chen J. H. Adv. Mater. 2012, 24, 1399.
19 Wang G. Z. ; Gao Z. ; Tang S. W. ; Chen C. Q. ; Duan F. F. ; Zhao S. C. ; Lin S. W. ; Feng Y. H. ; Zhou L. ; Qin Y. ACS Nano 2012, 6, 11009.
20 Gu X. ; Zhu W. M. ; Jia C. J. ; Zhao R. ; Schmidt W. G. ; Wang Y. Q. Chem. Commun. 2011, 47, 5337.
21 Kim S. S. ; Han D. H. ; Cho S. B. IEEE Trans. Magn. 1994, 30, 4554.
22 Wang L. ; He F. ; Wan Y. Z. J. Alloy. Compd. 2011, 509, 4726.
23 Li N. ; Hu C. W. ; Cao M. H. Phys. Chem. Chem. Phys. 2013, 15, 7685.
24 Chen Y. ; Liu X. Y. ; Mao X. Y. ; Xie Q. X. ; Zhuang Z. ; Han Z. W. Nanoscale 2014, 6, 6440.
25 Lv H. L. ; Liang X. H. ; Cheng Y. ; Zhang H. Q. ; Tang D. M. ; Zhang B. S. ; Ji G. B. ; Du Y. W. ACS Appl. Mater. Interfaces 2015, 7, 4744.
26 Li W. X. ; Wang L. C. ; Li G. M. ; Xu Y. J. Magn. Magn. Mater. 2015, 377, 259.
27 Wan Y. Z. ; Xiao J. ; Li C. Z. ; Xiong G. Y. ; Guo R. S. ; Li L.L. ; Han M. ; Luo H. L. J. Magn. Magn. Mater. 2016, 399, 252.
28 Tang N. J. ; Zhong W. ; Au C. T. ; Yang Y. ; Han M. G. ; Lin K.L. ; Du Y. W. J. Phys. Chem. C 2008, 112, 19316.
29 Cao M. S. ; Song W. L. ; Hou Z. L. ; Wen B. ; Yuan J. Carbon 2010, 48, 788.
30 Du Y. C. ; Liu T. ; Yu B. ; Gao H. B. ; Xu P. ; Wang J. Y. ; Wang X. H. ; Han X. J. Mater. Chem. Phys. 2012, 135, 884.
31 Wang L. ; Huang Y. ; Li C. ; Chen J. ; Sun X. Phys. Chem. Chem. Phys. 2015, 17, 2228.
32 Cole K. S. ; Cole R. H. J. Chem. Phys 1941, 9, 341.
33 Frenkel J. ; Dorfman J. Nature 1930, 126, 274.
34 Watts P. C. P. ; Hsu W. K. ; Barnes A. ; Chambers B. Adv. Mater. 2003, 45, 600.
35 Qing Y. C. ; Zhou W. C. ; Luo F. ; Zhu D. M. Carbon 2010, 48, 4074.
[1] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[2] Xueting LIN,Mingli FU,Hui HE,Junliang WU,Limin CHEN,Daiqi YE,Yun HU,Yifan WANG,William WEN. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 719-730.
[3] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[4] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[5] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[6] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[7] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[8] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[9] Jun-Tao LI,Jiao-Hong WU,Tao ZHANG,Ling HUANG. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 968-975.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[11] Min FANG,Zong-Yuan WANG,Chang-Jun LIU. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 435-440.
[12] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[13] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.
[14] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[15] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.