Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (7): 1379-1389    DOI: 10.3866/PKU.WHXB201704182
REVIEW     
Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells
GU Jin-Yu1,2, QI Peng-Wei1,2, PENG Yang1,2
1 Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China;
2 Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
Download:   PDF(1329KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Perovskite solar cells have undergone rapid development because of their high solar absorption efficiencies, long carrier lifetime and diffusion length, high tolerance to lattice defects, and tunable bandgaps. In the past few years, the solar energy conversion efficiency of the perovskite solar cells has increased to 22.1%. However, despite their promising prospects, as demonstrated by the laboratory-fabricated prototypes, lead toxicity and instability of perovskite solar cells severely impeded their industrialization and applications. Recently, inorganic lead-free perovskite solar cells (such as ABX3 and A2BB'X6), which use Sn, Ge, Bi, Ag, and other metals as replacements for Pb, and Cs and Rb as replacements for methylamine, have been pursued as potential solutions for the toxicity and stability issues. This review highlights the recent research efforts in the development of inorganic lead-free perovskite solar cells and provides a perspective on future developments.



Key wordsPerovskite materials      Solar cell      Nontoxicity      High stability      Photovoltaic conversion     
Received: 15 December 2016      Published: 18 April 2017
MSC2000:  O649  
Fund:  

The project was supported by the Natural Science Foundation of Jiangsu Province, China (BK20160323).

Corresponding Authors: PENG Yang     E-mail: ypeng@suda.edu.cn
Cite this article:

GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201704182     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I7/1379

(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc.2009, 131, 6050. doi: 10.1021/ja809598r
(2) Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088. doi: 10.1039/c1nr10867k
(3) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506. doi: 10.1038/nphoton.2014.134
(4) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591
(5) Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A. 2015, 3, 8970. doi: 10.1039/C4TA04994B
(6) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M.G. Nat. Photonics 2014, 8, 489. doi: 10.1038/nphoton.2014.82
(7) Im, J.; Stoumpos, C. C.; Jin, H.; Freeman, A. J.; Kanatzidis, M. G. J. Phys. Chem. Lett. 2015, 6, 3503. doi: 10.1021/acs.jpclett.5b01738
(8) Yamada, K.; Nakada, K.; Takeuchi, Y.; Nawa, K.; Yamane, Y. Bull. Chem. Soc. Jp. 2011, 84, 926. doi: 10.1246/bcsj.20110075
(9) Chiarella, F.; Zappettini, A.; Licci, F.; Borriello, I.; Cantele, G.; Ninno, D.; Cassinese, A.; Vaglio, R. Phys. Rev. B 2008, 77, 045129. doi:10.1103/PhysRevB.77.045129
(10) Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281
(11) Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778
(12) Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608. doi: 10.1021/nl5012992
(13) Huang, L. Y.; Lambrecht, W. R. L. Phys. Rev. B 2016, 93, 195211. doi: 10.1103/PhysRevB.93.195211
(14) Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094. doi: 10.1021/ja5033259
(15) Lin, G.; Lin, Y.; Huang, H.; Cui, R.; Guo, X.; Liu, B.; Dong, J.; Guo, X.; Sun, B. Nano Energy 2016, 27, 638. doi: 10.1016/j.nanoen.2016.08.015
(16) Feng, J. Appl. Mater. 2014, 2, 081801. doi: 10.1063/1.4885256
(17) Scaife, D. E.; Weller, P. F.; Fisher, W. G. J. Solid State Chem. 1974, 9, 308. doi: 10.1016/0022-4596(74)90088-7
(18) Yamada, K.; Funabiki, S.; Horimoto, H.; Matsui, T.; Okuda, T.; Ichiba, S. Chem. Lett. 1991, 801. doi: 10.1246/cl.1991.801
(19) Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 8579. doi: 10.1021/ja301539s
(20) Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T. Appl. Phys. Lett. 2010, 96, 221903. doi: 10.1063/1.3442511
(21) Chen, Z.; Yu, C.; Shum, K.; Wang, J. J.; Pfenninger, W. N.; Vockic;Midgley, J.; Kenney, J. T. J. Luminescence 2012, 132, 345. doi: 10.1016/j.jlumin.2011.09.006
(22) Xing, G.; Kumar, M. H.; Chong, W. K.; Liu, X.; Cai, Y.; Ding, H.; Asta, M.; Grätzel, M.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Adv. Mater. 2016, 28, 8191. doi: 10.1002/adma.201601418
(23) Wang, N.; Zhou, Y.; Ju, M. G.; Garcès, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W. Adv. Energy Mater. 2016, 160, 1130. doi: 10.1002/aenm.201601130
(24) Xu, P.; Chen, S.; Xiang, H. J.; Gong, X. G.; Wei, S. H. Chem. Mater. 2014, 26, 6068. doi: 10.1021/cm503122j
(25) Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Grätzel, M.; Mhaisalkar, S. G.; Mathews, N. Adv. Mater. 2014, 26, 7122. doi: 10.1002/adma.201401991
(26) Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N. J. Phys. Chem.C.2015, 119, 1763. doi: 10.1021/jp5126624
(27) Peedikakkandy, L.; Bhargava, P. RSC Adv. 2016, 6, 19857. doi: 10.1039/c5ra22317b
(28) Seo, D. K.; Gupta, N.; Whangbo, M. H.; Hillebrecht, H.; Thiele, G. Inorg Chem. 1998, 37, 407. doi: 10.1021/ic970659e
(29) Thiele, G.; Rotter, H. W.; Schmidt, K. D. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1987, 545, 148. doi: 10.1002/zaac.19875450217
(30) Stoumpos, C. C.; Frazer, L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A. J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 6804. doi: 10.1021/jacs.5b01025
(31) Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; Mhaisalkar, S. G. J. Mater. Chem. A 2015, 3, 23829. doi: 10.1039/c5ta05741h
(32) Ming, W.; Shi, H.; Du, M. H. J. Mater. Chem. A 2016, 4, 13852. doi: 10.1039/c6ta04685a
(33) Chen, F. S. J. Appl. Phys. 1969, 40, 3389. doi: 10.1063/1.1658195
(34) Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Science 2009, 324, 63. doi: 10.1126/science.1168636
(35) Chakrabartty, J. P.; Nechache, R.; Harnagea, C.; Rosei, F. Opt. Exp. 2014, 22, 80. doi: 10.1364/oe.22.000a80
(36) Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Basu, S. R.; Paran, D.; Reichertz, L.; Ihlefeld, J.; Adamo, C.; Melville, A.; Chu, Y.H.; Yang, C. H.; Musfeldt, J. L.; Schlom, D. G.; Ager, J. W., III;Ramesh, R. Appl. Phys. Lett. 2009, 95, 062909. doi: 10.1063/1.3204695
(37) Qu, T. L.; Zhao, Y. G.; Xie, D.; Shi, J. P.; Chen, Q. P.; Ren, T. L. Appl. Phys. Lett. 2011, 98, 173507. doi: 10.1063/1.3584031
(38) Guo, Y.; Guo, B.; Dong, W.; Li, H.; Liu, H. Nanotechnology 2013, 24, 275201. doi: 10.1088/0957-4484/24/27/275201
(39) Bhatnagar, A.; Chaudhuri, A. R.; Kim, Y. H.; Hesse, D.; Alexe, M. Nat. Commun. 2013, 4, 2835. doi: 10.1038/ncomms3835
(40) Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; F. Rosei. Nat. Photonics 2015, 9, 61. doi: 10.1038/nphoton.2014.255
(41) Kamba, S.; Nuzhnyy, D.; Nechache, R.; Zaveta, K.; Niznansky, D.; Santava, E.C.; Harnagea; Pignolet, A. Phys. Rev. B 2008, 77, 104111. doi: 10.1103/PhysRevB.77.104111
(42) Nechache, R.; Cojocaru, C. V.; Harnagea, C.; Nauenheim, C.; Nicklaus, M.; Ruediger, A.; Rosei, F.; Pignolet, A. Adv. Mater. 2011, 23, 1724. doi: 10.1002/adma.201004405
(43) McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Chem. Mater.2016, 28, 1348. doi: 10.1021/acs.chemmater.5b04231
(44) Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 1254. doi: 10.1021/acs.jpclett.6b00376
(45) Xiao, Z.; Meng, W.; Wang, J.; Yan, Y. ChemSusChem 2016, 9, 2628. doi: 10.1002/cssc.201600771
(46) Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 2579. doi: 10.1021/acs.jpclett.6b01041
(47) Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138. doi: 10.1021/jacs.5b13294
(48) Gou, G.; Young, J.; Liu, X.; Rondinelli, J. M. Inorg. Chem. 2016, 56, 26. doi: 10.1021/acs.inorgchem.6b01701
(49) Saparov, B.; Sun, J. P.; Meng, W.; Xiao, Z.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2016, 28, 2315. doi: 10.1021/acs.chemmater.6b00433
(50) Kaltzoglou, A.; Antoniadou, M.; Perganti, D.; Siranidi, E.; Raptis, V.; Trohidou, K.; Psycharis, V. A.; Kontos, G.; Falaras, P. Electrochim. Acta 2015, 184, 466. doi: 10.1016/j.electacta.2015.10.030
(51) Lee, B.; Stoumpos, C. C.; Zhou, N.; Hao, F.; Malliakas, C.; Yeh, C. Y.; Marks, T. J.; Kanatzidis, M. G.; Chang, R. P. H. J. Am. Chem. Soc. 2014, 136, 15379. doi: 10.1021/ja508464w
(52) Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J.; Kanatzidis, M. G. Sol. Energy Mater. Sol. Cells 2017, 159, 227. doi: 10.1016/j.solmat.2016.09.022
(53) Qiu, X.; Jiang, Y.; Zhang, H.; Qiu, Z.; Yuan, S.; Wang, P.; Cao, B. Phys. Status Solidi-Rapid Res. Lett. 2016, 10, 587. doi: 10.1002/pssr.201600166
(54) Lehner, A. J.; Fabini, D. H.; Evans, H. A.; Hebert, C. A.; Smock, S. R.; Hu, J.; Wang, H.; Zwanziger, J. W.; Chabinyc, M. L.; Seshadri, R. Chem. Mater. 2015, 27, 7137. doi: 10.1021/acs.chemmater.5b03147
(55) Park, B. W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Adv. Mater. 2015, 27, 6806. doi: 10.1002/adma.201501978
(56) Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Chem. Mater. 2015, 27, 5622. doi: 10.1021/acs.chemmater.5b01989
(57) Kim, Y.; Yang, Z.; Jain, A.; Voznyy, O.; Kim, G. H.; Liu, M.; Quan, L.N.; de Arquer, F. P. G.; Comin, R.; Fan, J. Z.; Sargent, E. H. Angew. Chem. Int. Ed. 2016, 55, 9585. doi: 10.1002/anie.201603608
(58) Xiao, Z.; Meng, W.; Mitzi, D. B.; Yan, Y. J. Phys. Chem. Lett. 2016, 7, 3903. doi: 10.1021/acs.jpclett.6b01834
(59) Johansson, M. B.; Zhu, H.; Johansson, E. M. J. J. Phys. Chem. Lett. 2016, 7, 3467. doi: 10.1021/acs.jpclett.6b01452

[1] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[2] HUANG Yang, SUN Qing-De, XU Wen, HE Yao, YIN Wan-Jian. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[3] ZHENG Jiang-Bo, CHEN Zhi-Ming, HU Zhi-Cheng, ZHANG Jie, HUANG Fei. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[4] XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[5] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[6] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[7] LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[8] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.
[9] LIU Yan-Ping, WU Yi-Shi, FU Hong-Bing. Recent Progress in Singlet Exciton Fission[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1880-1893.
[10] WENG Xiao-Long, WANG Yan, JIA Chun-Yang, WAN Zhong-Quan, CHEN Xi-Ming, YAO Xiao-Jun. Theoretical Investigation of Novel Tetrathiafulvalene- Triphenylamine Sensitizers[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1990-1998.
[11] HUANG Chang-Shui, LI Yu-Liang. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1314-1329.
[12] ZHANG Xue, HAN Yang, CHAI Shuang-Zhi, HU Nan-Tao, YANG Zhi, GENG Hui-Juan, WEI Hao. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1330-1346.
[13] LIU Xue-Peng, KONG Fan-Tai, CHEN Wang-Chao, YU Ting, GUO Fu-Ling, CHEN Jian, DAI Song-Yuan. Application of Organic Hole-Transporting Materials in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1347-1370.
[14] XU Guo-Cheng, DENG Xian-Yun, LI Jun-Li, ZHANG Rui, XIE Yun-Peng, TU Guo-Li, XIA Jiang-Bin, LU Xing. Lead Iodide as a New Type of Hole Transport Layer for the High Performance of P3HT:PC61BM-Based Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1307-1313.
[15] ZHOU Li, ZHU Jun, XU Ya-Feng, SHAO Zhi-Peng, ZHANG Xu-Hui, YE Jia-Jiu, HUANG Yang, ZHANG Chang-Neng, DAI Song-Yuan. Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1207-1213.