Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (7): 1379-1389    DOI: 10.3866/PKU.WHXB201704182
REVIEW     
Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells
Jin-Yu GU1,2,Peng-Wei QI1,2,Yang PENG1,2,*()
1 Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
2 Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
Download: HTML     PDF(1329KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Perovskite solar cells have undergone rapid development because of their high solar absorption efficiencies, long carrier lifetime and diffusion length, high tolerance to lattice defects, and tunable bandgaps. In the past few years, the solar energy conversion efficiency of the perovskite solar cells has increased to 22.1%. However, despite their promising prospects, as demonstrated by the laboratory-fabricated prototypes, lead toxicity and instability of perovskite solar cells severely impeded their industrialization and applications. Recently, inorganic lead-free perovskite solar cells (such as ABX3 and A2BB'X6), which use Sn, Ge, Bi, Ag, and other metals as replacements for Pb, and Cs and Rb as replacements for methylamine, have been pursued as potential solutions for the toxicity and stability issues. This review highlights the recent research efforts in the development of inorganic lead-free perovskite solar cells and provides a perspective on future developments.



Key wordsPerovskite materials      Solar cell      Nontoxicity      High stability      Photovoltaic conversion     
Received: 15 December 2016      Published: 18 April 2017
MSC2000:  O649  
Fund:  The project was supported by the Natural Science Foundation of Jiangsu Province, China(BK20160323)
Corresponding Authors: Yang PENG     E-mail: ypeng@suda.edu.cn
Cite this article:

Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201704182     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I7/1379

Fig 1 Crystal structure of CsSnI3 22.
Fig 2 Schematic representation of the one-step solution fabrication of B-γ-CsSnI3 thin films and device23.
Fig 3 Current density?voltage (J?V) curves of different tin perovskite solar cells with Br, Ⅰ concentrations varying from CsSnI3?xBrx 26.
Fig 4 Electronic band gaps and Conductivity effective masses calculated for all compounds in the halide double perovskite family44.
Fig 5 Schematic of crystal structure of Cs2BiAgX6 46.
Fig 6 Schematic illustration of the architecture and J?V curves of the Cs2SnI6 based perovskite solar cells52.
Fig 7 Schematic of crystal structure of Cs3Bi2I9 and cross-sectional SEM images for Cs3Bi2I9 based solar cells.
Fig 8 Ultraviolet absorption spectra and surface SEM images of Cs3Bi2I9 and CsBi3I10 59.
Fig 9 Schematic picture of the layer structure and SEM cross section of the CsBi3I10 solar cell59.
MaterialBandgap/eVλUV-Vis/nmPLHTMETMPCE/%Reference
t1/nst2/nst3/ns
CsSnI31.319500.32.65Spiro-OMeTADTiO23.02 ×10?423, 24
CsSnBr31.757090.728.0Spiro-OMeTADTiO20.1023, 24
CsSnCl32.804204.112.324
CsSnI2Br1.4188024
CsSnBr2Cl1.9063024
CsSnBrCl22.1057324
CsSn(Br0.5I0.5)31.777000.33.3Spiro-OMeTADTiO20.1223, 24
CsSnIBr21.6524
CsSnI3with SnF2Spiro-OMeTADTiO21.6623
CsSnI2Br with SnF2Spiro-OMeTADTiO21.6723
CsSnIBr2with SnF2Spiro-OMeTADTiO21.5623
CsSnBr3with SnF2Spiro-OMeTADTiO20.9523
CsSnI3NiOxPCBM3.3120
RbSnI31.7245
CsGeI31.62775Spiro-OMeTADTiO20.1128
BiMnO31.200.1032
BiFeO32.671.4133
Bi2FeCrO68.1037
Cs2BiAgBr61.950.541456844
Cs2BiAgCl62.771510044
(Rb/Cs)Sn2I61.5845
Cs2SnI61.48P3HTPLD-ZnO0.8650
Cs3Bi2I91.90Spiro-OMeTADTiO21.0953
Cs3Sb2I92.05PTAATiO20.9055
CsBi3I101.77P3HTTiO20.4058
AgBi2I71.87P3HTTiO21.2256
Table 1 Properties of various inorganic lead-free perovskite materials and their device efficiencies.
1 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
2 Im J. H. ; Lee C. R. ; Lee J. W. ; Park S. W. ; Park N. G. Nanoscale 2011, 3, 4088.
3 Green M. A. ; Ho-Baillie A. ; Snaith H. J. Nat. Photonics 2014, 8, 506.
4 Kim H. S. ; Lee C. R. ; Im J. H. ; Lee K. B. ; Moehl T. ; Marchioro A. ; Moon S. J. ; Humphry-Baker R. ; Yum J. H. ; Moser J. E. ; Gr?tzel M. ; Park N. G. Sci. Rep. 2012, 2, 591.
5 Niu G. ; Guo X. ; Wang L. J. Mater. Chem. A. 2015, 3, 8970.
6 Hao F. ; Stoumpos C. C. ; Cao D. H. ; Chang R. P. H. ; Kanatzidis M. G. Nat. Photonics 2014, 8, 489.
7 Im J. ; Stoumpos C. C. ; Jin H. ; Freeman A. J. ; Kanatzidis M. G. J. Phys. Chem. Lett. 2015, 6, 3503.
8 Yamada K. ; Nakada K. ; Takeuchi Y. ; Nawa K. ; Yamane Y. Bull. Chem. Soc. Jp. 2011, 84, 926.
9 Chiarella F. ; Zappettini A. ; Licci F. ; Borriello I. ; Cantele G. ; Ninno D. ; Cassinese A. ; Vaglio R. Phys. Rev. B 2008, 77, 045129.
10 Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
11 Yin W. J. ; Shi T. ; Yan Y. Appl. Phys. Lett. 2014, 104, 063903.
12 Amat A. ; Mosconi E. ; Ronca E. ; Quarti C. ; Umari P. ; Nazeeruddin M. K. ; Gr?tzel M. ; De Angelis F. Nano Lett. 2014, 14, 3608.
13 Huang L. Y. ; Lambrecht W. R. L. Phys. Rev. B 2016, 93, 195211.
14 Hao F. ; Stoumpos C. C. ; Chang R. P. H. ; Kanatzidis M. G. J. Am. Chem. Soc. 2014, 136, 8094.
15 Lin G. ; Lin Y. ; Huang H. ; Cui R. ; Guo X. ; Liu B. ; Dong J. ; Guo X. ; Sun B. Nano Energy 2016, 27, 638.
16 Feng J. Appl. Mater. 2014, 2, 081801.
17 Scaife D. E. ; Weller P. F. ; Fisher W. G. J. Solid State Chem. 1974, 9, 308.
18 Yamada, K.; Funabiki, S.; Horimoto, H.; Matsui, T.; Okuda, T.; Ichiba, S. Chem. Lett. 1991, 801. doi: 10.1246/cl.1991.801
19 Chung I. ; Song J. H. ; Im J. ; Androulakis J. ; Malliakas C. D. ; Li H. ; Freeman A. J. ; Kenney J. T. ; Kanatzidis M. G. J. Am. Chem. Soc. 2012, 134, 8579.
20 Shum K. ; Chen Z. ; Qureshi J. ; Yu C. ; Wang J. J. ; Pfenninger W. ; Vockic N. ; Midgley J. ; Kenney J. T. Appl. Phys. Lett. 2010, 96, 221903.
21 Chen Z. ; Yu C. ; Shum K. ; Wang J. J. ; Pfenninger W. N. ; Vockic; Midgley J. ; Kenney J. T J. Luminescence 2012, 132, 345.
22 Xing G. ; Kumar M. H. ; Chong W. K. ; Liu X. ; Cai Y. ; Ding H. ; Asta M. ; Gr?tzel M. ; Mhaisalkar S. ; Mathews N. ; Sum T. C. Adv. Mater. 2016, 28, 8191.
23 Wang N. ; Zhou Y. ; Ju M. G. ; Garcès H. F. ; Ding T. ; Pang S. ; Zeng X. C. ; Padture N. P. ; Sun X. W. Adv. Energy Mater. 2016, 160, 1130.
24 Xu P. ; Chen S. ; Xiang H. J. ; Gong X. G. ; Wei S. H. Chem. Mater. 2014, 26, 6068.
25 Kumar M. H. ; Dharani S. ; Leong W. L. ; Boix P. P. ; Prabhakar R. R. ; Baikie T. ; Shi C. ; Ding H. ; Ramesh R. ; Asta M. ; Gr?tzel M. ; Mhaisalkar S. G. ; Mathews N. Adv. Mater. 2014, 26, 7122.
26 Sabba D. ; Mulmudi H. K. ; Prabhakar R. R. ; Krishnamoorthy T. ; Baikie T. ; Boix P. P. ; Mhaisalkar S. ; Mathews N. J. Phys. Chem.C. 2015, 119, 1763.
27 Peedikakkandy L. ; Bhargava P. RSC Adv. 2016, 6, 19857.
28 Seo D. K. ; Gupta N. ; Whangbo M. H. ; Hillebrecht H. ; Thiele G. Inorg Chem. 1998, 37, 407.
29 Thiele G. ; Rotter H. W. ; Schmidt K. D. Zeitschrift Fur Anorganische Und Allgemeine Chemie 1987, 545, 148.
30 Stoumpos C. C. ; Frazer L. ; Clark D. J. ; Kim Y. S. ; Rhim S. H. ; Freeman A. J. ; Ketterson J. B. ; Jang J. I. ; Kanatzidis M. G. J. Am. Chem. Soc. 2015, 137, 6804.
31 Krishnamoorthy T. ; Ding H. ; Yan C. ; Leong W. L. ; Baikie T. ; Zhang Z. ; Sherburne M. ; Li S. ; Asta M. ; Mathews N. ; Mhaisalkar S. G. J. Mater. Chem. A 2015, 3, 23829.
32 Ming W. ; Shi H. ; Du M. H. J. Mater. Chem. A 2016, 4, 13852.
33 Chen F. S. J. Appl. Phys. 1969, 40, 3389.
34 Choi T. ; Lee S. ; Choi Y. J. ; Kiryukhin V. ; Cheong S. W. Science 2009, 324, 63.
35 Chakrabartty J. P. ; Nechache R. ; Harnagea C. ; Rosei F. Opt. Exp. 2014, 22, 80.
36 Yang S. Y. ; Martin L. W. ; Byrnes S. J. ; Conry T. E. ; Basu S. R. ; Paran D. ; Reichertz L. ; Ihlefeld J. ; Adamo C. ; Melville A. ; Chu Y.H. ; Yang C. H. ; Musfeldt J. L. ; Schlom D. G. ; Ager J.W.Ⅲ ; Ramesh R. Appl. Phys. Lett. 2009, 95, 062909.
37 Qu T. L. ; Zhao Y. G. ; Xie D. ; Shi J. P. ; Chen Q. P. ; Ren T. L. Appl. Phys. Lett. 2011, 98, 173507.
38 Guo Y. ; Guo B. ; Dong W. ; Li H. ; Liu H. Nanotechnology 2013, 24, 275201.
39 Bhatnagar A. ; Chaudhuri A. R. ; Kim Y. H. ; Hesse D. ; Alexe M. Nat. Commun. 2013, 4, 2835.
40 Nechache R. ; Harnagea C. ; Li S. ; Cardenas L. ; Huang W. ; Chakrabartty J. ; Rosei F. Rosei. Nat. Photonics 2015, 9, 61.
41 Kamba S. ; Nuzhnyy D. ; Nechache R. ; Zaveta K. ; Niznansky D. ; Santava E.C. ; Harnagea ; Pignolet A. Phys. Rev. B 2008, 77, 104111.
42 Nechache R. ; Cojocaru C. V. ; Harnagea C. ; Nauenheim C. ; Nicklaus M. ; Ruediger A. ; Rosei F. ; Pignolet A. Adv. Mater. 2011, 23, 1724.
43 McClure E. T. ; Ball M. R. ; Windl W. ; Woodward P. M. Chem. Mater. 2016, 28, 1348.
44 Volonakis G. ; Filip M. R. ; Haghighirad A. A. ; Sakai N. ; Wenger B. ; Snaith H. J. ; Giustino F. J. Phys. Chem. Lett. 2016, 7, 1254.
45 Xiao Z. ; Meng W. ; Wang J. ; Yan Y. ChemSusChem 2016, 9, 2628.
46 Filip M. R. ; Hillman S. ; Haghighirad A. A. ; Snaith H. J. ; Giustino F. J. Phys. Chem. Lett. 2016, 7, 2579.
47 Slavney A. H. ; Hu T. ; Lindenberg A. M. ; Karunadasa H. I. J. Am. Chem. Soc. 2016, 138, 2138.
48 Gou G. ; Young J. ; Liu X. ; Rondinelli J. M. Inorg. Chem. 2016, 56, 26.
49 Saparov B. ; Sun J. P. ; Meng W. ; Xiao Z. ; Duan H. S. ; Gunawan O. ; Shin D. ; Hill I. G. ; Yan Y. ; Mitzi D. B. Chem. Mater. 2016, 28, 2315.
50 Kaltzoglou A. ; Antoniadou M. ; Perganti D. ; Siranidi E. ; Raptis V. ; Trohidou K. ; Psycharis V. A. ; Kontos G. ; Falaras P. Electrochim. Acta 2015, 184, 466.
51 Lee B. ; Stoumpos C. C. ; Zhou N. ; Hao F. ; Malliakas C. ; Yeh C. Y. ; Marks T. J. ; Kanatzidis M. G. ; Chang R. P. H. J. Am. Chem. Soc. 2014, 136, 15379.
52 Qiu X. ; Cao B. ; Yuan S. ; Chen X. ; Qiu Z. ; Jiang Y. ; Ye Q. ; Wang H. ; Zeng H. ; Liu J. ; Kanatzidis M. G. Sol. Energy Mater. Sol. Cells 2017, 159, 227.
53 Qiu X. ; Jiang Y. ; Zhang H. ; Qiu Z. ; Yuan S. ; Wang P. ; Cao B. Phys. Status Solidi-Rapid Res. Lett 2016, 10, 587.
54 Lehner A. J. ; Fabini D. H. ; Evans H. A. ; Hebert C. A. ; Smock S. R. ; Hu J. ; Wang H. ; Zwanziger J. W. ; Chabinyc M. L. ; Seshadri R. Chem. Mater. 2015, 27, 7137.
55 Park B. W. ; Philippe B. ; Zhang X. ; Rensmo H. ; Boschloo G. ; Johansson E. M. J. Adv. Mater. 2015, 27, 6806.
56 Saparov B. ; Hong F. ; Sun J. P. ; Duan H. S. ; Meng W. W. ; Cameron S. ; Hill I. G. ; Yan Y. F. ; Mitzi D. B. Chem. Mater. 2015, 27, 5622.
57 Kim Y. ; Yang Z. ; Jain A. ; Voznyy O. ; Kim G. H. ; Liu M. ; Quan L.N. ; de Arquer F. P. G. ; Comin R. ; Fan J. Z. ; Sargent E. H. Angew. Chem. Int. Ed. 2016, 55, 9585.
58 Xiao Z. ; Meng W. ; Mitzi D. B. ; Yan Y. J. Phys. Chem. Lett. 2016, 7, 3903.
59 Johansson M. B. ; Zhu H. ; Johansson E. M. J. J. Phys. Chem. Lett. 2016, 7, 3467.
[1] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.
[2] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[3] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[4] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[5] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[6] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[7] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[8] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[9] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[10] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[11] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[12] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[13] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[14] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[15] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.