Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (8): 1614-1620    DOI: 10.3866/PKU.WHXB201704181
A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications
WANG Xiao-Qiang1, LIU Jiang1, XIE Yong-Min1,2, CAI Wei-Zi1,3, ZHANG Ya-Peng1, ZHOU Qian1, YU Fang-Yong1,4, LIU Mei-Lin1,5
1 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China;
2 Institute of Metallurgy and Chemical Industry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China;
3 Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 999077, P. R. China;
4 Institute of Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong Province, P. R. China;
5 School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245, USA
Download:   PDF(1361KB) Export: BibTeX | EndNote (RIS)      


A direct carbon solid oxide fuel cell (DC-SOFC) stack was prepared with 3 tubular cells electrically connected in series. To increase carbon storage in the stack, the anode was fabricated outside the tubular cells so that carbon fuel can be loaded at the exterior of the stack, which is more spacious than the interior. The 3-cell-stack is operated directly with carbon as the fuel and oxygen in ambient air as the oxidant. With a total effective area of 10.2 cm2 and a 5% (w) Fe-loaded activated carbon fuel of 17 g, the stack reveals a peak power of 4.1 W at 800℃. The stack discharged at a constant current of 1.0 A for 19 h, giving a charge capacity of 19 A·h and an energy capacity of 31.6 W·h, which are much higher than those of a similar stack with anode on the inside and carbon loaded at the interior. The high capacity of our DC-SOFC opens up potential applications in portable devices.

Key wordsSolid oxide fuel cell      Carbon fuel      Segmented-in-series stack      Carbon-air battery      Portable application     
Received: 17 February 2017      Published: 18 April 2017
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (21276097, 21567008, 21263005), Special Funds of Guangdong Province Public Research and Ability Construction, China (2014A010106008), Guangdong Innovative and Entrepreneurial Research Team Program, China (2014ZT05N200), and Program of Excellent Ph.D Thesis Authors of Guangdong Province, China.

Corresponding Authors: LIU Jiang     E-mail:
Cite this article:

WANG Xiao-Qiang, LIU Jiang, XIE Yong-Min, CAI Wei-Zi, ZHANG Ya-Peng, ZHOU Qian, YU Fang-Yong, LIU Mei-Lin. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.

URL:     OR

(1) Cao, D.; Sun, Y.; Wang, G. J. Power Sources 2007, 167, 250. doi: 10.1016/j.jpowsour.2007.02.034
(2) Nakagawa, N.; Ishida, M. Ind. Eng. Chem. Res. 1988, 27, 1181. doi: 10.1021/ie00079a016
(3) Tang, Y. B.; Liu, J. Int. J. Hydrog. Energy 2010, 35, 11188. doi: 10.1016/j.ijhydene.2010.07.068
(4) Bai, Y. H.; Liu, Y.; Tang, Y. B.; Xie, Y. M.; Liu, J. Int. J. Hydrog. Energy 2011, 36, 9189. doi: 10.1016/j.ijhydene.2011.04.171
(5) Liu, J.; Liu, Y.; Tang, Y. B.; Bai, Y. H. A Direct Carbon Solid OxideFuel Cell Power System. CN Patent: ZL201110008698.8, 2013.
(6) Yang, B. B.; Ran, R.; Zhong, Y. J.; Su, C.; Moses O. T.; Shao, Z. P. Angew. Chem. Int. Edit. 2015, 54, 1. doi: 10.1002/ange.201411039
(7) Zhou, W.; Jiao, Y.; Li, S. D.; Shao, Z. P. ChemElectroChem. 2016, 3 (2), 193. doi: 10.1002/celc.201500420
(8) Lee, A. C.; Mitchell, R. E.; Gür, T. M. J. Power Sources 2009, 194, 774. doi: 10.1016/j.jpowsour.2009.05.039
(9) Li, C.; Shi, Y. X.; Cai, N. S. J. Power Sources 2010, 195, 4660. doi: 10.1016/j.jpowsour.2010.01.083
(10) Xu, X. Y.; Zhou, W.; Liang, F. C.; Zhu, Z. H. Appl. Energy 2013, 108, 402. doi: 10.1016/j.apenergy.2013.03.053
(11) Jayakumar, A.; Küngas, R.S. R.; Javadekar, A.; Buttrey, D. J.; Vohs, J.M. Energy Environ. Sci. 2011, 4, 4133. doi: 10.1039/C1EE01863A
(12) Xu, X. Y.; Zhou, W.; Zhu, Z. H. Ind. Eng. Chem. Res. 2013, 52 (50), 17927. doi: 10.1021/ie403164c
(13) Zecevic, S.; Patton, E. M.; Parhami, P. Carbon 2004, 42, 1983. doi: 10.1016/j.carbon.2004.03.036
(14) Cooper, J. F.; Selman, R. ECS Trans. 2009, 19, 15. doi: 10.1016/0950-4230(95)00057-7
(15) Xie, Y. M.; Tang, Y. B.; Liu J. J. Solid State Electr. 2013, 17, 121. doi:10.1007/s10008-012-1866-5
(16) Rady, A.C.; Giddey, S.; Badwal, S. P.; Ladewig, B. P.; Bhattacharya, S. Energy Fuels 2012, 26, 1471. doi: 10.1021/ef201694y
(17) Gür, T. M. Chem. Rev. 2013, 113, 6179. doi: 10.1021/cr400072b
(18) Tang, Y. B.; Liu, J.; Sui, J. ECS Trans. 2009, 25, 1109. doi: 10.1149/1.3205638
(19) Tang, Y. B.; Liu, J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1191. [唐玉宝, 刘 江. 物理化学学报, 2010, 26 (5), 1191.]doi: 10.3866/PKU.WHXB20100502
(20) Liu, R. Z.; Zhao, C. H.; Li, J. L.; Zeng, F. R.; Wang, S. R. J. Power Sources 2010, 195, 480. doi: 10.1016/j.jpowsour.2009.07.032
(21) Zhang, L.; Xiao, J.; Xie, Y. M.; Tang, Y. B.; Liu, J.; Liu, M. L. J. Alloy. Compd. 2014, 608, 272. doi: 10.1016/j.jallcom.2014.04.154
(22) Cai, W. Z.; Zhou, Q.; Xie, Y. M.; Liu, J. Fuel 2015, 159, 887. doi: 10.1016/j.fuel.2015.07.030
(23) Yu, F. Y.; Zhang, Y. P.; Yu, L.; Cai, W. Z.; Yuan, L. L.; Liu, J.; Liu, M.L. Int. J. Hydrog. Energy 2016, 41, 9048. doi: 10.1016/j.ijhydene.2016.04.063
(24) Xie, Y. M.; Cai, W. Z.; Xiao, J.; Tang, Y. B.; Liu, J.; Liu, M. L. J. Power Sources 2015, 277, 1. doi: 10.1016/j.jpowsour.2014.12.016
(25) Rady, A. C.; Giddey, S.; Kulkarni, A.; Badwal, S. P. S.; Bhattacharya, S.; Ladewig, B. P. Appl. Energy 2014, 120, 56. doi: 10.1016/j.apenergy.2014.01.046
(26) Dudek, M.; Tomczyk, P.; Socha, R.; Hamaguchi, M. Int. J. Hydrog. Energy 2014, 39, 12386. doi: 10.1016/j.ijhydene.2014.04.057
(27) Zhu, X. B.; Li, Y. Q.; Lü, Z. Int. J. Hydrog. Energy 2016, 41, 5057. doi: 10.1016/j.ijhydene.2016.01.105
(28) Zhou, Q.; Cai, W. Z.; Zhang, Y. P.; Liu, J.; Yuan, L. L.; Yu, F. Y.; Wang, X. Q.; Liu, M. L. Biomass Bioenergy 2016, 91, 250. doi: 10.1016/j.biombioe.2016.05.036
(29) Cai, W. Z.; Zhou, Q.; Xie, Y. M.; Liu, J.; Long, G. H.; Cheng, S.; Liu, M. L. Appl. Energy 2016, 179, 1232. doi: 10.1016/j.apenergy.2016.07.068
(30) Xu, H. R.; Chen, B.; Liu, J.; Ni, M. Appl. Energy 2016, 178, 353. doi:10.1016/j.apenergy.2016.06.064
(31) Bai, Y. H.; Liu, J.; Gao, H. B. J. Alloy. Compd. 2009, 480, 554. doi: 10.1016/j.jallcom.2009.01.089
(32) Liu, J.; Su, W. H.; Lü, Z.; Ji, Y.; Pei, L.; Liu, W.; He, T. M. A RapidSealing Method for Solid Oxide Fuel Cell Using Metal Conductive Adhesive. CN Patent: ZL 02133049.2. 2004.

[1] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[2] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[3] YU Liang, YU Fang-Yong, YUAN Li-Li, CAI Wei-Zi, LIU Jiang, YANG Cheng-Hao, LIU Mei-Lin. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 503-509.
[4] FU Zhao-Ming, WANG Ming-Yang, ZHANG Yan-Xing, ZHANG Na, YANG Zong-Xian. First-Principles Study on the Microstructure of Triple-Phase Boundaries in the Ni/Yttria-Stabilized Zirconia Anode[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1055-1060.
[5] LIU Dan-Dan, XIE Yong-Min, LIU Jiang, WANG Jin-Xia. Preparation of NiO-YSZ-Graphite Aqueous Slurry and Its Application in Fabricating Solid Oxide Fuel Cells by Slip-Casting[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 331-337.
[6] HU Zhi, HUANG Xiao-Wei, CHEN Yang-Hui. Synthesis and Properties of SmBaCo2O5+δ Cathode Material via EDTA-Glycine Process[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2585-2591.
[7] MENG Xiu-Xia, GONG Xun, YANG Nai-Tao, TAN Xiao-Yao, MA Zi-Feng. Preparation and Properties of Direct-Methane Solid Oxide Fuel Cell Based on a Graded Cu-CeO2-Ni-YSZ Composite Anode[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1719-1726.
[8] QIN Guo-Heng, HUANG Xiao-Wei, HU Zhi. Chemical Compatibility and Electrochemical Performance between LaAlO3-Based Electrolyte and Selected Anode Materials[J]. Acta Phys. -Chim. Sin., 2013, 29(02): 311-318.
[9] LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan. Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2065-2070.
[10] YANG Jun-Fang, CHENG Ji-Gui, FAN Yu-Meng, WANG Rui, GAO Jian-Feng. Preparation, Structure and Properties of Pr1.2Sr0.8NiO4 Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 95-99.
[11] TANG Yu-Bao, LIU Jiang. Fueling Solid Oxide Fuel Cells with Activated Carbon[J]. Acta Phys. -Chim. Sin., 2010, 26(05): 1191-1194.
[12] ZONG Wei-Zheng, ZHU Yong-Fa. Preparation of Single-Chamber Solid Oxide Fuel Cell by Co-Pressing and Direct Forming Process[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 827-832.
[13] LEI Ze, ZHU Qing-Shan, HAN Min-Fang. Fabrication and Performance of Direct Methane SOFC with a Cu-CeO2-Based Anode[J]. Acta Phys. -Chim. Sin., 2010, 26(03): 583-588.
[14] HE Qiong; WANG Shi-Zhong. Effects of the Concentration of LSGMC5 on the Performance of Ni-Fe Composite Anodes for Dimethyl Ether Fuel Cells[J]. Acta Phys. -Chim. Sin., 2007, 23(04): 473-478.
[15] LEI Ze;ZHU Qing-Shan . Solution Combustion Synthesis and Characterization of Nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode Powders[J]. Acta Phys. -Chim. Sin., 2007, 23(02): 232-236.