Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(9)>> 1730-1751     doi: 10.3866/PKU.WHXB201705042         中文摘要
Halide Perovskite Materials for Solar Cells: a Theoretical Review
HUANG Yang1,2, SUN Qing-De1, XU Wen2, HE Yao2, YIN Wan-Jian1
1 School Institute for Energy and Materials Innovation, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou 215006, Jiangsu Province, P. R. China;
2 School of Physics and Astronomy, Yunnan University, Kunming 650091, P. R. China
Full text: PDF (3855KB) HTML Export: BibTeX | EndNote (RIS)

Halide perovskites have recently emerged as promising materials for low-cost, high-efficiency solar cells. The efficiency of perovskite-based solar cells has increased rapidly, from 3.8% in 2009 to 22.1% in 2016, with the use of all-solid-state thin-film architecture and by engineering cell structures with mixed-halide perovskites. The emergence of perovskite solar cells has revolutionized the field not only because of their rapidly increased efficiency, but also their flexibility in material growth and architecture. The superior performance of the perovskite solar cells suggested that perovskite materials possess intrinsically unique properties. In this review, we summarize recent theoretical investigations into the structural, electrical, and optical properties of halide perovskite materials in terms of their applications in solar cells. We also discuss some current challenges of using perovskites in solar cells, along with possible theoretical solutions.



Keywords: Halide perovskites   Solar cells   Theoretical study  
Received: 2017-03-21 Accepted: 2017-04-21 Publication Date (Web): 2017-05-04
Corresponding Authors: YIN Wan-Jian Email: wjyin@suda.edu.cn

Fund: The project was supported by the National Key Research and Development Program of China (2016YFB0700700), National Natural Science Foundation of China (51602211, 11674237), and Natural Science Foundation of Jiangsu Province of China (BK20160299).

Cite this article: HUANG Yang, SUN Qing-De, XU Wen, HE Yao, YIN Wan-Jian. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017,33 (9): 1730-1751.    doi: 10.3866/PKU.WHXB201705042

(1) Cohen, R. E. Nature 1992, 358, 136. doi: 10.1038/358136a0
(2) Pena, M. A. and Fierro, J. L. G. Chem. Mater. 2001, 101, 1981. doi: 10.1021/cr980129f
(3) Weston, L.; Janotti, A.; Cui, X. Y.; Himmetoglu, B.; Stampfl, C.; Van de Walle, C. G. Phys. Rev. B 2015, 92, 085201. doi: 10.1103/PhysRevB.92.085201
(4) Bjaalie, L.; Janotti, A.; Krishnaswamy, K.; Van de Walle, C. G. Phys. Rev. B 2016, 93, 115316. doi: 10.1103/PhysRevB.93.115316
(5) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591
(6) Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J
(7) Gao, P.; Gratzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448. doi: 10.1039/C4EE00942H
(8) Bretschneider, S. A.; Weickert, J.; Dorman, J. A.; Schmidt-Mende, L. APL Mater. 2014, 2, 040701. doi: 10.1063/1.4871795
(9) Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623. doi: 10.1021/jz4020162
(10) Park, N. G. J. Phys. Chem. Lett. 2013, 4, 2423. doi: 10.1021/jz400892a
(11) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509
(12) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P. N., M. K.; Grätzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340
(13) Lee, M. M.; Teusxher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604
(14) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486. doi: 10.1038/nature11067
(15) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
(16) Park, N. G. Mater. Today 2015, 18, 65. doi: 10.1016/j.mattod.2014.07.007
(17) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506. doi: 10.1038/nphoton.2014.134
(18) Gratzel, M. Nat. Mater. 2014, 13, 838. doi: 10.1038/nmat4065
(19) McGehee, M. D. Nat. Mater. 2014, 13, 845. doi: 10.1038/nmat4050
(20) Du, M. H. J. Phys. Chem. Lett. 2015, 6, 1461. doi: 10.1021/acs.jpclett.5b00199
(21) Bakulin, A. A.; Selig, O.; Bakker, H. J.; Rezus, Y. L. A.; Muller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A.; Frost, J. M.; Jansen, T. L. C. J. Phys. Chem. Lett. 2015, 6, 3663. doi: 10.1021/acs.jpclett.5b01555
(22) Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. J. Appl. Phys. 2016, 119, 115501. doi: 10.1063/1.4943638
(23) Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S. H. Angew. Chem. Int. Ed. 2015, 54, 1791. doi: 10.1002/anie.201409740
(24) Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goni, A. R.; Leguy, A. M. A.; Barnes, P.R. F.; Walsh, A. Phys. Rev. B 2015, 92, 144308. doi: 10.1103/PhysRevB.92.144308
(25) She, L.; Liu, M.; Zhong, D. ACS Nano 2016, 10, 1126. doi: 10.1021/acsnano.5b06420
(26) Gao, W.; Gao, X.; Abtew, T. A.; Sun, Y.; Zhang, S. B.; Zhang, P. H. Phys. Rev. B 2016, 93, 085202. doi: 10.1103/PhysRevB.93.085202
(27) Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k
(28) Menendez-Proupin, E.; Beltran Rios, C. L.; Wahnon, P. Phys. Status Solidi RRL 2015, 9, 559. doi: 10.1002/pssr.201510265
(29) Comin, R.; Crawford, M. K.; Said, A. H.; Herron, N.; Guise, W. E.; Wang, X.; Whitfield, P. S.; Jain, A.; Gong, X.; McGaughey, A. J. H.; Sargent, E. H. Phys. Rev. B 2016, 94, 094301. doi: 10.1103/PhysRevB.94.094301
(30) Zhao, Y.; Zhu, K. Chem. Soc. Rev. 2016, 45, 655. doi: 10.1039/C4CS00458B
(31) Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; Niu, G.; Tang, J. Nano Lett. 2016, 16, 7446. doi: 10.1021/acs.nanolett.6b03119
(32) Fan, R.; Huang, Y.; Wang, L.; Li, L.; Zheng, G.; Zhou, H. Adv. Energy Mater. 2016, 6, 1600460. doi: 10.1002/aenm.201600460
(33) Li, J.-J.; Ma, J.-Y.; Hu, J.-S.; Wang, D. and Wan, L.-J. ACS Appl. Mater. Interfaces 2016, 8, 26002. doi: 10.1021/acsami.6b07647
(34) Wells, H. L. Z. Anorg. Chem. 1893, 3, 195.
(35) Yamada, K.; Isobe, K.; Tsuyama, E.; Okuda, T.; Furukawa, Y. Solid State Ionics 1995, 79, 152. doi: 10.1016/0167-2738(95)00055-B
(36) Depmeier, W.; Moller, A.; Klaska, K. H. Acta Crystallogr., Sect. B: Struct. Sci. 1980, 36, 803. doi: 10.1107/S0567740880004578
(37) Winkler, B.; Milman, V.; Lee, M. H. J. Chem. Phys. 1998, 108, 5506. doi: 10.1063/1.475939
(38) Moller, C. K. Nature 1958, 182, 1436. doi: 10.1038/1821436a0
(39) Christensen, A. N.; Rasmussen, S. E. Acta Chem. Scand. 1965, 19, 421
(40) Moller, C. K. Nature 1957, 180, 981. doi: 10.1038/180981a0
(41) Weber, D. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1978, 33, 1443.
(42) Mitzi, D. B.; Chondroudis, K.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 29. doi: 10.1147/rd.451.0029
(43) Mitzi, D. B. J. Chem. Soc., Dalton Trans. 2001, 1, 1. doi: 10.1039/B007070J
(44) Mitzi, D. B. Chem. Mater. 2001, 13, 3283. doi: 10.1021/cm0101677
(45) Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A.M. Science 1995, 267, 1473. doi: 10.1126/science.267.5203.1473
(46) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687. doi: 10.1038/nnano.2014.149
(47) Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088. doi: 10.1039/C1NR10867K
(48) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Tyu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014
(49) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b
(50) Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.L.; Hayase, S. J. Phys. Chem. Lett. 2014, 5, 1004. doi: 10.1021/jz5002117
(51) Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622. doi: 10.1021/ja411509g
(52) Shi, J. J.; Luo, Y. H.; Wei, H. Y.; Luo, J. H.; Dong, J.; Lv, S.T.; Xiao, J. Y.; Xu, Y. Z.; Zhu, L. F.; Xu, X.; Wu, H. J.; Li, D.M.; Meng, Q. B. ACS Appl. Mater. Interfaces 2014, 6, 9711. doi: 10.1021/am502131t
(53) Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. J. Am. Chem. Soc. 2013, 135, 19087. doi: 10.1021/ja410659k
(54) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. J. Am. Chem. Soc. 2014, 136, 7837. doi: 10.1021/ja502824c
(55) Bi, D. Q.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. J. Phys. Chem. Lett. 2013, 4, 1532. doi: 10.1021/jz400638x
(56) Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H.S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050
(57) Chen, Q.; Zhou, H. P.; Song, T. B.; Luo, S.; Hong, Z. R.; Duan, H. S.; Dou, L. T.; Liu, Y. S.; Yang, Y. Nano Lett. 2014, 14, 4158. doi: 10.1021/nl501838y
(58) Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034
(59) Yin, W.-J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281
(60) Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778
(61) Yin, W.-J.; Chen, H.; Shi, T.; Wei, S.-H.; Yan, Y. Adv. Electron. Mater. 2015, 1, 1500044. doi: 10.1002/aelm.201500044
(62) Yin, W.-J.; Yan, Y.; Wei, S.-H. J. Phys. Chem. Lett. 2014, 5 , 3625. doi: 10.1021/jz501896w
(63) Yang, J. H.; Yin, W. J.; Park, J. S.; Wei, S.-H. J. Mater. Chem. A 2016, 4, 13105. doi: 10.1039/c6ta03599j
(64) Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. J. Mater. Chem. A 2015, 3, 8926. doi: 10.1039/c4ta05033a
(65) Li, C. H.; Lu, X. G.; Ding, W. Z.; Feng, L. M.; Gao, Y. H.; Guo, Z. G. Acta Crystallogr., Sect. B: Struct. Sci. 2008, 64, 702.
(66) Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F.X.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628. doi: 10.1039/C3TA10518K
(67) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x
(68) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739. doi: 10.1039/C3EE40810H
(69) Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 8579. doi: 10.1021/ja301539s
(70) Beecher, A. N.; Semonin, O. E.; Skelton, J. M.; Frost, J. M.; Terban, M. W.; Zhai, H.; Alatas, A.; Owen, J. S.; Walsh, A.; Billinge, S. J. L. ACS Energy Lett. 2016, 1, 880. doi: 10.1021/acsenergylett.6b00381
(71) Walsh, A.; Watson, G. W. J. Solid State Chem. 2005, 178, 1422. doi: 10.1016/j.jssc.2005.01.030
(72) Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Chem. Soc. Rev. 2011, 40, 4455. doi: 10.1039/C1CS15098G
(73) Wei, S.-H.; Zunger, A. Phys. Rev. B 1997, 55, 13605. doi: 10.1103/PhysRevB.55.13605
(74) Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999. doi: 10.1021/jz401532q
(75) Giorgi, G.; Fujisawa, J. I.; Segawa, H.; Yamashita, K. J. Phys. Chem. Lett. 2013, 4, 4213. doi: 10.1021/jz4023865
(76) Wang, Q.; Shao, Y.; Xie, H.; Lyu. L.; Liu, X.; Gao, Y.; Huang. J. Appl. Phys. Lett. 2014, 105, 163508. doi: 10.1063/1.4899051
(77) Zhang, S.-B.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H. Phys. Rev. B 1998, 57, 9642. doi: 10.1103/PhysRevB.57.9642
(78) Chen, S.-Y.; Gong, X. G.; Walsh, A.; Wei, S.-H. Appl. Phys. Lett. 2009, 94, 041903. doi: 10.1063/1.3074499
(79) Korbel, S.; Kammerlander, D.; Sarmiento-Perez, R.; Attaccalite, C.; Marques, M. A. L.; Botti, S. . Phys. Rev. B 2015, 91, 075134. doi: 10.1103/PhysRevB.91.075134
(80) Kim, J.; Lee, S. H.; Lee, J. H.; Hong, K. H. J. Phys. Chem. Lett. 2014, 5, 1312. doi: 10.1021/jz500370k
(81) Du, M. H. J. Mater. Chem. A 2014, 2, 9091. doi: 10.1039/C4TA01198H
(82) Yin, W.-J.; Wei, S.-H.; Al-Jassim, M. M.; Yan, Y. F. Appl. Phys. Lett. 2011, 99, 142109. doi: 10.1063/1.3647756
(83) Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167
(84) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982
(85) Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K. J. Phys. Chem. Lett. 2014, 5, 1748. doi: 10.1021/jz500645n
(86) Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Gratzel, M. Nat. Commun. 2014, 5, 3834. doi: 10.1038/ncomms4834
(87) Christians, J. A.; Fung, R. C. M.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 758. doi: 10.1021/ja411014k
(88) Abu Laban, W.; Etgar, L. Energy Environ. Sci. 2013, 6, 3249. doi: 10.1039/C3EE42282H
(89) Mei, A.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Gratzel, M.; Han, H. Science 2014, 345, 295. doi: 10.1126/science.1254763
(90) Shi, J. J.; Dong, J.; Lv, S. T.; Xu, Y. Z.; Zhu, L. F.; Xiao, J.Y.; Xu, X.; Wu, H. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Appl. Phys. Lett. 2014, 104, 063901. doi: 10.1063/1.4864638
(91) Aharon, S.; El Cohen, B.; Etgar, L. J. Phys. Chem. C 2014, 118, 17160. doi: 10.1021/jp5023407
(92) Choi, J. J.; Yang, X. H.; Norman, Z. M.; Billinge, S. J. L.; Owen, J. S. Nano Lett. 2014, 14, 127. doi: 10.1021/nl403514x
(93) Li, C.; Wu, Y. L.; Poplawsky, J.; Pennycook, T. J.; Paudel, N.; Yin, W. J.; Haigh, S. J.; Oxley, M. P.; Lupini, A. R.; Al-Jassim, M. M.; Pennycook, S. J.; Yan, Y. F. Phys. Rev. Lett. 2014, 112, 156103. doi: 10.1103/PhysRevLett.112.156103
(94) Feng, C. B.; Yin, W. J.; Nie, J. L.; Zu, X. T.; Huda, M. N.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. Solid State Commun. 2012, 152, 1744. doi: 10.1016/j.ssc.2012.05.006
(95) Yin, W.-J.; Wu, Y. L.; Noufi, R.; Al-Jassim, M. M.; Yan, Y. Appl. Phys. Lett. 2013, 102, 193905. doi: 10.1063/1.4804606
(96) Yin, W. J.; Wu, Y. L.; Wei, S. H.; Noufi, R.; Al-Jassim, M.M.; Yan, Y. Adv. Electron. Mater. 2014, 4, 1300712. doi: 10.1002/aenm.201300712
(97) Yu, L. P.; Zunger, A. Phys. Rev. Lett. 2012, 108 , 068701. doi: 10.1103/PhysRevLett.108.068701
(98) Yu, L. P.; Kokenyesi, R. S.; Keszler, D. A.; Zunger, A. Adv. Energy Mater. 2013, 3, 43. doi: 10.1002/aenm.201200538
(99) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovoltaics 2014, 22, 701. doi: 10.1002/pip.2573
(100) Dualeh, A.; Moehl, T.; Tetreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2014, 8, 362. doi: 10.1021/nn404323g
(101) Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Energy Environ. Sci. 2014, 7, 3690. doi: 10.1039/C4EE02465F
(102) Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. W.; Wojciechowski, K.; Zhang, W. J. J. Phys. Chem. Lett. 2014, 5, 1511. doi: 10.1021/jz500113x
(103) Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Nat. Mater. 2015, 14, 193. doi: 10.1038/nmat4150
(104) Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. J. Phys. Chem. Lett. 2014, 5, 2390. doi: 10.1021/jz5011169
(105) Yuan, Y.; Wang, Q.; Shao, Y.; Lu, H.; Li, T.; Gruverman, A.; Huang, J. Adv. EnergyMater. 2016, 6, 1501803. doi: 10.1002/aenm.201501803
(106) Yuan, Y.; Huang, J. Acc. Chem. Res. 2016, 49, 286. doi: 10.1021/acs.accounts.5b00420
(107) Eames, C. F., J. M.; Barnes, P. R. F.; O'Regan, B. C.; Walsh, A.; Saiful Islam, M. Nat. Commun. 2015, 6, 7497. doi: 10.1038/ncomms8497
(108) Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. J. Am. Chem. Soc. 2015, 137, 10048. doi: 10.1021/jacs.5b03615
(109) Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8, 2188. doi: 10.1039/C5EE01265A
(110) Egger, D. A.; Kronik, L.; Rappe, A. M. Angew. Chem. Int. Ed. 2015, 54, 12437. doi: 10.1002/anie.201502544
(111) Yuan, Y.; Chae, J.; Shao, Y.; Wang, Q.; Xiao, Z.; Centrone, A.; Huang, J. Adv. Energy Mater. 2015, 5, 1500615. doi: 10.1002/aenm.201500615
(112) Yang, T. Y.; Gregori, G.; Pellet, N.; Gratzel, M.; Maier, J. Angew. Chem. Int. Ed. 2015, 54, 7905. doi: 10.1002/ange.201500014
(113) Yang, D.; Ming, W.; Shi, H.; Zhang, L.; Du, M.-H. Chem. Mater. 2016, 28, 4349. doi: 10.1021/acs.chemmater.6b01348
(114) Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608. doi: 10.1021/nl5012992
(115) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gratzel, M.; DeAngelis, F. J. Phys. Chem. C 2013, 117, 13902. doi: 10.1021/jp4048659
(116) Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G.; Gigli, G.; De Angelis, F.; Mosca, R. Chem. Mater. 2013, 25, 4613. doi: 10.1021/cm402919x
(117) Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. J. Mater. Chem. A 2014, 2, 9221. doi: 10.1039/C4TA00435C
(118) Edri, E.; Kirmayer, S.; Henning, A.; Mukhopadhyay, S.; Gartsman, K.; Rosenwaks, Y.; Hodes, G.; Cahen, D. Nano Lett. 2014, 14, 1000. doi: 10.1021/nl404454h
(119) Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R.S.; Otero, L.; Mora-Sero, I. J. Phys. Chem. Lett. 2014, 5, 1628. doi: 10.1021/jz5006797
(120) Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2014, 5, 429. doi: 10.1021/jz402706q
(121) Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2013, 4, 897. doi: 10.1021/jz400348q
(122) Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C.R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K.; Zhao, X.; Xiong, R. R.; Yan, Y. Nat. Energy 2017, 2, 17018. doi: 10.1038/nenergy.2017.18
(123) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
(124) Zunger, A.; Wei, S.-H.; Ferreira, L. G.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353. doi: 10.1103/PhysRevLett.65.353
(125) Wei, S. H.; Ferreira, L. G.; Bernard, J. E.; Zunger, A. Phys. Rev. B 1990, 42, 9622. doi: 10.1103/PhysRevB.42.9622
(126) Wei, S. H.; Ferreira, L. G.; Zunger, A. Phys. Rev. B 1990, 41, 8240. doi: 10.1103/PhysRevB.41.8240
(127) Kitazawa, N.; Watanable, Y.; Nakamura, Y. J. Mater. Sci. 2002, 37, 3585. doi: 10.1023/A:1016584519829
(128) Leng, M.; Chen, Z.; Yang, Y.; Li, Z.; Zeng, K.; Li, K.; Niu, G.; He, Y.; Zhou, Q.; Tang, J. Angew. Chem. Int. Ed. 2016, 55, 15012. doi: 10.1002/anie.201608160
(129) Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H. Adv. Mater. 2016, 29, 1603885. doi: 10.1002/adma.201603885
(130) Zhao, X.-G., Yang, J. H., Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H.Wei; L. Zhang. J. Am. Chem. Soc. 2017, 139, 2630. doi: 10.1021/jacs.6b09645
(131) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/C3EE43822H
(132) Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D.; Bien, T.; Docampo, P. J. Phys. Chem. Lett. 2014, 5, 2791. doi: 10.1021/jz501237m
(133) Kang, J.; Wang, L.-W. J. Phys. Chem. Lett. 2017, 8, 489. doi:10.1021/acs.jpclett.6b02800
(134) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489. doi: 10.1038/nphoton.2014.82
(135) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperson, G.E.; Johnston, M. B.; Petrozza, A. M.; Herz, L. M.; Snaith, H.J. Energy Environ. Sci. 2014, 7, 3061. doi: 10.1039/C4EE01076K
(136) Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094. doi: 10.1021/ja5033259
(137) Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chem. Commun. 2014, 50, 11727. doi: 10.1039/C4CC04973J
(138) Zheng, C.; Rubel, O. arXiv preprint arXiv:1612.04781 2016.(139) Koh, T. M.; Thirumal, K.; Soo, H. S.; Mathews, N. ChemSusChem 2016, 9, 2541. doi: 10.1002/cssc.201601025
(140) Stoumpos, C. C.; Cao, D. H.; Clark D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Chem. Mater. 2016, 28, 2852. doi: 10.1021/acs.chemmater.6b00847
(141) Huan, T. D.; Tuoc, V. N.; Minh, N. V. Phys. Rev. B 2016, 93, 094105. doi: 10.1103/PhysRevB.93.094105
(142) Lehner, A. J.; Fabini, D. H.; Evans, H. A.; Hebert, C. A.; Smock, S. R.; Hu, J.; Wang, H. B.; Zwanziger, J. W.; Chabinyc, M. L.; Seshadri, R. Chem. Mater. 2015, 27, 7137. doi: 10.1021/acs.chemmater.5b03147
(143) Fraccarollo, A.; Cantatore, V.; Boschetto, G.; Marchese, L.; Cossi, M. J. Chem. Phys. 2016, 144, 164701. doi: 10.1063/1.4947305
(144) Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseua, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. Nature 2016, 536, 312. doi: 10.1038/nature18306
(145) You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; DeMarco, N.; Yang, Y. Nat. Nanotechnol. 2016, 11, 75. doi: 10.1038/nnano.2015.230
(146) Ma, L.; Dai, J.; Zeng, X. C. Adv. Energy Mater. 2017, 1601731. doi: 10.1002/aenm.201601731
(147) Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem. Int. Ed. 2014, 53, 11232. doi: 10.1002/ange.201406466
(148) Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 7843. doi: 10.1021/jacs.5b03796
(149) Mitzi, D. B.; Medeiros, D. R.; Malenfant, P. R. L. Inorg. Chem. 2002, 41, 2134. doi: 10.1021/ic011190x
(150) Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H. J. Am. Chem. Soc. 2016, 138, 2649. doi: 10.1021/jacs.5b11740
(151) Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. J. Phys. Chem. Lett. 2015, 6, 898. doi: 10.1021/jz502547f
(152) Ganose, A. M.; Savory, C. N.; Scanlon, D. O. Chem. Commun. 2017, 53, 20. doi: 10.1039/C6CC06475B
(153) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M. Nature 1994, 369, 467. doi: 10.1038/369467a0
(154) Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2015, 27, 5622. doi: 10.1021/acs.chemmater.5b01989
(155) Chen, Y.; Li, B.; Huang, W.; Gao, D.; Liang, Z. Chem. Commun. 2015, 51, 11997. doi: 10.1039/C5CC03615A
(156) Halder, A.; Chulliyil, R.; Subbiah, A. S.; Khan, T.; Chattoraj, S.; Chowdhury, A.; Sarkar, S. K. J. Phys. Chem. Lett. 2015, 6, 3483. doi: 10.1021/acs.jpclett.5b01327
(157) Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Angew. Chem. Int. Ed. 2015, 54, 7617. doi: 10.1002/ange.201503038
(158) Daub, M.; Hillebrecht, H. Angew. Chem. Int. Ed. 2015, 54 , 11016. doi: 10.1002/anie.201506449
(159) Ganose, A. M.; Savory, C. N.; Scanlon, D. O. J. Phys. Chem. Lett. 2015, 6, 4594. doi: 10.1021/acs.jpclett.5b02177
(160) Xiao, Z.; Meng, W.; Saparov, B.; Duan, H.; Wang, C.; Feng, C.; Liao, W.; Ke, W.; Zhao, D.; Wang, J.; Mitzi, D. B.; Yan, Y. J. Phys. Chem. Lett. 2016, 7, 1213. doi: 10.1021/acs.jpclett.6b00248
(161) Umeyama, D.; Lin, Y.; Karunadasa, H. I. Chem. Mater. 2016, 28, 3241. doi: 10.1021/acs.chemmater.6b01147
(162) Xiao, Z.; Meng, W.; Wang, J.; Yan, Y. Phys. Chem. Chem. Phys. 2016, 18, 25786. doi: 10.1019/C6CP05302E
(163) Mitzi, D. B. Chem. Mater. 1996, 8, 791. doi: 10.1021/cm9505097
(164) Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N.S.; Wang, L. W.; Alivisatos, A. P.; Yang, P. Science 2015, 349, 1518. doi: 10.1126/science.aac7660
(165) Huang, T. J.; Thiang, Z. X.; Yin, X. S.; Tang, C. H.; Qi, G. J.; Gong, H. Chem. Eur. J. 2016, 22, 2146. doi: 10.1002/chem.201503680
(166) Yang, J.-H.; Yuan, Q. H.; Yakobson, B. I. J. Phys. Chem. C 2016, 120, 24682. doi: 10.1021/acs.jpcc.6b10162
(167) Niu, W.; Eiden, A.; Prakash, G. V.; Baumberg, J. J. Appl. Phys. 2014, 104, 171111. doi: 10.1063/1.4874846
(168) Zhang, S.; Audebert, P.; Wei, Y.; Choueiry, A. A.; Lanty, G.; Boissiere, C.; Lauret, J. S.; Deleporte, E. Materials 2010, 3, 3385. doi: 10.3390/ma3053385
(169) Liang, D.; Peng, Y.; Fu, Y.; Sh earer, M. J.; Zhang, J.; Zhai, J.; Zha ng, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. ACS Nano 2016, 10, 6897. doi: 10.1021/acsnano.6b02683
(170) Kagan, C. R.; Mitzi, D. B.; Di mitrakopoulos, C. D. Science 1999, 286, 945. doi: 10.1126/science.286.5441.945
(171) Vasala, S.; Karppinen, M. Prog. Solid State Chem. 2015, 43, 1. doi: 10.1016/j.progsolidstchem.2014.08.001
(172) Nechache, R. N.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Nat. Photonics 2014, 9, 61. doi: 10.1038/nphoton.2014.255
(173) Berger, R. F.; Neaton, J. B. Phys. Rev. B 2012, 86, 165211. doi: 10.1103/PhysRevB.86.165211
(174) van Loef, E. V. D.; Dorenbos, P.; van Eijk, C. W. E.; Krämer, K. W.; Güdel, H. U. J. Phys.: Condens. Matter 2002, 14, 8481. doi: 10.1088/0953-8984/14/36/307
(175) Volonakis, G.; Filip, M. R.; Ha ghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 1254. doi: 10.1021/acs.jpclett.6b00376
(176) Slavney, A. H.; Hu, T.; Linden berg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138. doi: 10.1021/jacs.5b13294
(177) McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Chem. Mater. 2016, 28, 1348. doi: 10.1021/acs.chemmater.5b04231
(178) Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 2579. doi: 10.1021/acs.jpclett.6b01041
(179) Wei, F.; Deng, Z.; Sun, S.; Xi e, F.; Kieslich, G.; Evans, D.M.; Carpenter, M. A.; Bristowe, P. D.; Che etham, A. K. Mater. Horiz. 2016, 3, 328. doi: 10.1039/C6MH00053C
(180) Deng, Z.; Wei, F.; Sun, S.; Kieslich, G.; Cheetham, A. K.; Bristowe, P. D. J. Mater. Chem. A 2016, 4, 12025. doi: 10.1039/C6TA05817E
(181) Xiao, Z.; Meng, W.; Wang, J.; Yan, Y. ChemSusChem 2016, 9, 2628. doi: 10.1002/cssc.201600771
(182) Savory, C. N.; Walsh, A.; Scanlon, D. O. ACS Energy Lett. 2016, 1, 949. doi: 10.1021/acsenergylett.6b00471
(183) Brivio, F.; Walker, A. B.; Walsh, A. APL Mater. 2013, 1, 042111. doi: 10.1063/1.4824147
(184) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M.K.; Maier, J.; Grätzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151. doi: 10.1002/anie.201309361

1. LI Zhong-Gao, LU Tian, GAO Heng, ZHANG Qing, LI Min-Jie, REN Wei, LU Wen-Cong.Design of Benzobisthiadiazole Analogues as Promising Anchoring Groups for High Efficient Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017,33(9): 1789-1795
2. GU Jin-Yu, QI Peng-Wei, PENG Yang.Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017,33(7): 1379-1389
3. XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong.Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017,33(4): 670-690
4. LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng.Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017,33(2): 329-343
5. LIU Ji-Chong, TANG Feng, YE Feng-Ye, CHEN Qi, CHEN Li-Wei.Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017,33(10): 1934-1943
6. WENG Xiao-Long, WANG Yan, JIA Chun-Yang, WAN Zhong-Quan, CHEN Xi-Ming, YAO Xiao-Jun.Theoretical Investigation of Novel Tetrathiafulvalene- Triphenylamine Sensitizers[J]. Acta Phys. -Chim. Sin., 2016,32(8): 1990-1998
7. LIU Yan-Ping, WU Yi-Shi, FU Hong-Bing.Recent Progress in Singlet Exciton Fission[J]. Acta Phys. -Chim. Sin., 2016,32(8): 1880-1893
8. HUANG Chang-Shui, LI Yu-Liang.Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1314-1329
9. XU Guo-Cheng, DENG Xian-Yun, LI Jun-Li, ZHANG Rui, XIE Yun-Peng, TU Guo-Li, XIA Jiang-Bin, LU Xing.Lead Iodide as a New Type of Hole Transport Layer for the High Performance of P3HT:PC61BM-Based Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1307-1313
10. SHI Ji-Fu, HUANG Qi-Zhang, WAN Qing-Cui, XU Xue-Qing, LI Chun-Sheng, XU Gang.Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(4): 822-827
11. WANG Li-Juan, LI Qi, HAO Yan-Zhong, SHEN Shi-Gang, XU Dong-Sheng.Improvement of Quantum Dot Coverage of CdS/CdSe/TiO2 Hierarchical Hollow Sphere Photoanodes[J]. Acta Phys. -Chim. Sin., 2016,32(4): 983-989
12. PEI Lei, ZHANG Gui-Ling, SHANG Yan, SUN Cui-Cui, GAN Tian.Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2495-2502
13. ZHAO Cai-Bin, GE Hong-Guang, ZHANG Qiang, JIN Ling-Xia, WANGWen-Liang, YIN Shi-Wei.Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2503-2510
14. WEI Hui-Yun, WANG Guo-Shuai, WU Hui-Jue, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo.Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016,32(1): 201-213
15. WANG Xiao-Feng, ZUO Guo-Fang, LI Zhi-Feng, LI Hui-Xue.Theoretical Study of the Phosphorescence Spectrum of Tris(2-phenylpyridine)iridium Using the Displaced Harmonic Oscillator Model[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1667-1676
16. HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min.Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2015,31(8): 1504-1512
17. LI Hui, LIU Xiang-Xin, ZHANG Yu-Feng, DU Zhong-Ming, YANG Biao, HAN Jun-Feng, BESLAND Marie-Paule.Synthesis of CdS with Large Band Gap Values by a Simple Route at Room Temperature[J]. Acta Phys. -Chim. Sin., 2015,31(7): 1338-1344
18. WU Na, LUO Qun, WU Zhen-Wu, MA Chang-Qi.Influence of Electrode Interfacial Buffer Layers on Thermal Stability of P3HT:PC61BM Solar Cells[J]. Acta Phys. -Chim. Sin., 2015,31(7): 1413-1420
19. KOU Yan-Lei, QU Sheng-Chun, LIU Kong, CHI Dan, LU Shu-Di, LI Yan-Pei, YUE Shi-Zhong.Development of Cd-Based Compound Nanocrystal-Organic Polymer Hybrid Solar Cells[J]. Acta Phys. -Chim. Sin., 2015,31(5): 807-816
20. LI Hui-Xue, ZUO Guo-Fang, LI Zhi-Feng, WANG Xiao-Feng, ZHENG Ren-Hui.Theoretical Study of Hemicyanine Dye as a Dye-Sensitized Solar Cell Light-Absorbing Material[J]. Acta Phys. -Chim. Sin., 2015,31(5): 866-876
21. WANG Yu-Qiao, WANG Pan-Pan, LU Jing, BAI Yi-Chao, GU Yun-Liang, SUN Yue-Ming.Dye-Sensitized Solar Cells Based on MWCNT/TiO2 Counter Electrode and Thiolate/Disulfide Non-Iodine Redox Couple[J]. Acta Phys. -Chim. Sin., 2015,31(3): 448-456
22. BAI Xiao-Gong, SHI Yan-Tao, WANG Kai, DONG Qing-Shun, XING Yu-Jin, ZHANG Hong, WANG Liang, MA Ting-Li.Synthesis of CH3NH3SrxPb(1-x)I3 with Less Pb Content and Its Application in All-Solid Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2015,31(2): 285-290
23. ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan.Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1495-1500
24. GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang.Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2014,30(3): 446-452
25. CHEN Xi-Ming, JIA Chun-Yang, WAN Zhong-Quan, YAO Xiao-Jun.Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(2): 273-280
26. ZHU De-Hua, ZHONG Rong, CAO Yu, PENG Zhi-Hui, FENG Ai-Xin, XIANG Wei-Dong, ZHAO Jia-Long.Size-Dependent Electron Injection and Photoelectronic Properties of CuInS2 Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(10): 1861-1866
27. ZHU Lei, QIANG Ying-Huai, ZHAO Yu-Long, GU Xiu-Quan, SONG Duan-Ming, SONG Chang-Bin.Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(11): 2339-2344
28. LI Wen-Zhe, WANG Li-Duo, GAO Rui, DONG Hao-Peng, NIU Guang-Da, GUO Xu-Dong, QIU Yong.Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices[J]. Acta Phys. -Chim. Sin., 2013,29(11): 2345-2353
29. GUO Xu-Dong, Ma Bei-Bei, WANG Li-Duo, GAO Rui, DONG Hao-Peng, QIU Yong.Electron Injection and Photovoltaic Properties in CdSe/ZnS Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1240-1246
30. YANG Gui-Jun, WANG Shen-Rui, ZHANG Yong-Chang, WANG Gang, CHEN Hui-Yuan, NAN Hui, LIN Hong.Effect of pH Values on Performance of Trollius Chinensis Pigment Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(03): 539-545
31. WANG Hai, XU Xue-Qing, SHI Ji-Fu, XU Gang.Application of Ionic Liquids with Carboxyl and Aromatic Ring Conjugated Anions in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(03): 525-532
32. WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao.Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(03): 516-524
33. ZHAN Wei-Shen, LI Rui, PAN Shi, GUO Ying-Nan, ZHANG Yi.Extension of Conjugate π Bridge in Dye Molecules for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(02): 255-262
34. GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li.A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(01): 82-88
35. DAI Yu-Hua, LI Xiao-Jie, FANG Yan-Yan, SHI Qiu-Fei, LIN Yuan, YANG Ming-Shan.Influence of Polymer Gel Electrolyte on the Performance of Dye-Sensitized Solar Cells Analyzed by Electrochemical Impedance Spectroscopy[J]. Acta Phys. -Chim. Sin., 2012,28(11): 2669-2675
36. JIANG Li-Lin, LU Xi-Yin, SONG Yun-Fei, LIU Wei-Long, YANG Yan-Qiang.Effects of Excited State Vibrational Coherence on Photo-Induced Electron Transfer Rates in Dye-Sensitized Nanocrystalline TiO2[J]. Acta Phys. -Chim. Sin., 2012,28(11): 2589-2596
37. LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian.Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2057-2064
38. LIANG Gui-Jie, ZHONG Zhi-Cheng, CHEN Mei-Hua, XU Jie, XU Wei-Lin, HE Ping, HOU Qiu-Fei, LI Zai-Fang.Effect of Donor Moieties on the Electronic Structures and Absorption Spectra of Indoline Dyes[J]. Acta Phys. -Chim. Sin., 2012,28(08): 1885-1891
39. CHU Ling-Ling, GAO Yu-Rong, WU Ming-Xing, WANG Lin-Lin, MA Ting-Li.Fabrication and Application of a Carbon Counter Electrode with Excellent Adhesion Properties for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(07): 1739-1744
40. LI Xiao-Ning, BAI Shou-Li, YANG Wen-Sheng, CHEN Ai-Fan, SUN Li-Na, LIN Yuan, ZHANG Jing-Bo.Electron Transport Properties of One-Dimensional Structural SnO2 Belts[J]. Acta Phys. -Chim. Sin., 2012,28(07): 1797-1802
41. CHANG Meng-Lei, LI Xin-Jun.Fabrication of Nanosheet/Nestlike Nanoarray Hierarchical TiO2 Film for Dye-Sensitized Solar Cell[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1368-1372
42. LI Dan, LIANG Ran, YUE He, WANG Peng, FU Li-Min, ZHANG Jian-Ping, AI Xi-Cheng.Influence of Donor and Acceptor Mass Ratios on P3HT:PCBM Film Structure and Device Performance[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1373-1379
43. ZHANG Ren-Kai, SUN Zhe, XIE Huan-Huan, LIANG Mao, XUE Song.New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination[J]. Acta Phys. -Chim. Sin., 2012,28(05): 1139-1145
44. ZHOU Wei, HUANG Qi-Yu, WANG Xiao-Chen, QI Fang-Yi, JIAO Fang, ZHENG Yi-Zhou.Fabrication and Characterization of Quasi-Solid-State Electrolyte Films Based on Polyvinyl Butyral[J]. Acta Phys. -Chim. Sin., 2012,28(05): 1134-1138
45. LI Hui-Xue, WANG Xiao-Feng, LI Zhi-Feng, ZHU Yuan-Cheng.Photolysis Reaction of 2-Phenylbenzo[d]oxazole[J]. Acta Phys. -Chim. Sin., 2012,28(05): 1094-1100
46. SHI Ji-Fu, FAN Ye, XU Xue-Qing, XU Gang, CHEN Li-Hua.Influence of Preparation Conditions on the Properties of Cu2S Photocathodes[J]. Acta Phys. -Chim. Sin., 2012,28(04): 857-864
47. GUO Xue-Yi, YI Peng-Fei, WANG Wei-Jia, YANG Ying.Electrochemical Properties of an Agarose-Based Magnetic Polymer Electrolyte in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(03): 585-590
48. XIAO Yao-Ming, WU Ji-Huai, YUE Gen-Tian, LIN Jian-Ming, HUANG Miao-Liang, FAN Le-Qing, LAN Zhang.Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(03): 578-584
49. ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi.Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(01): 78-84
50. WANG Xin-Chun, HU Bin-Bin, WANG Guang-Jun, YANG Guang-Hong, WAN Shao-Ming, DU Zu-Liang.Preparation of CIGS Thin Films by Electrodeposition Method Using Ethanol as a Solvent[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2826-2830
51. CAI Qian, LIANG Xiao-Juan, ZHONG Jia-Song, SHAO Ming-Guo, WANG Yun, ZHAO Xiao-Wei, XIANG Wei-Dong.Synthesis and Characterization of Sphere-Like Cu2ZnSnS4 Nanocrystals by Solvothermal Method[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2920-2926
52. LIN Xiao, WU Ming-Xing, AN Jiang, MIAO Qing-Qing, QIN Da, MA Ting-Li.Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(11): 2577-2582
53. LI Jing, SUN Ming-Xuan, ZHANG Xiao-Yan, CUI Xiao-Li.Counter Electrodes for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2255-2268
54. SHI Ji-Fu, WAN Qing-Cui, XU Gang, XU Xue-Qing, FAN Ye.Influence of Temperature on the Properties of Polysulfide Electrolyte and Quantum Dot Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2360-2366
55. LIU Run-Hua, ZHANG Sen, XIA Xin-Yuan, YUN Da-Qin, BIAN Zu-Qiang, ZHAO Yong-Liang.DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode[J]. Acta Phys. -Chim. Sin., 2011,27(07): 1701-1706
56. SHI Ji-Fu, XU Gang, MIAO Lei, XU Xue-Qing.p-Type and pn-Type Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(06): 1287-1299
57. LI Huan-Huan, CHEN Run-Feng, MA Cong, ZHANG Sheng-Lan, AN Zhong-Fu, HUANG Wei.Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(05): 1017-1025
58. ZHUO Zu-Liang, ZHANG Fu-Jun, XU Xiao-Wei, WANG Jian, LU Li-Fang, XU Zheng.Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment[J]. Acta Phys. -Chim. Sin., 2011,27(04): 875-880
59. LAO Chun-Feng, CHU Zeng-Ze, ZOU De-Chun.Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(02): 419-424
60. CHEN Dong-Po, ZHANG Xiao-Dan, WEI Chang-Chun, LIU Cai-Chi, ZHAO Ying.Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell[J]. Acta Phys. -Chim. Sin., 2011,27(02): 425-431
61. GAO Rui, MA Bei-Bei, WANG Li-Duo, SHI Yan-Tao, DONG Hao-Peng, QIU Yong.Photovoltaic Properties and Mechanism Analysis of a Dye/Al2O3 Alternating Assembly Structure by Electrochemical Impedance Spectroscopy[J]. Acta Phys. -Chim. Sin., 2011,27(02): 413-418
62. LIU Jia, YANG Hao-Tian, ZHANG Jing-Bo, ZHOU Xiao-Wen, LIN Yuan.Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2011,27(02): 408-412
63. WANG Yao-Qiong, WEI Zi-Dong, CAI Hong-Ying, ZHANG Qian, ZHAO Qiao-Ling.Pt/FTO Counter Electrode for Dye-Sensitized Solar Cells Prepared by Sputtering-Displacement[J]. Acta Phys. -Chim. Sin., 2010,26(11): 2957-2961
64. QIAN Di-Feng, ZHANG Qing-Hong, WAN Jun, LI Yao-Gang, WANG Hong-Zhi.Enhancing the Photovoltaic Performance of Dye Sensitized Solar Cells with the TiO2 Sol Infiltrated Nanocrystalline Electrode[J]. Acta Phys. -Chim. Sin., 2010,26(10): 2745-2751
65. WANG Wen-Li, LIN Hong, ZHANG Luo-Zheng, LI Xin, CUI Bai, LI Jian-Bao.Electrochemical Impedance Spectroscopy Analysis of an Electrophoretic Titania Nanotube/Nanoparticle Composite Film[J]. Acta Phys. -Chim. Sin., 2010,26(05): 1249-1253
66. ZHAN Wei-Shen, PAN Shi, LI Yuan-Zuo, CHEN Mao-Du.Molecular Design of D5 Analogues for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2010,26(05): 1408-1416
67. ZHAN Wei-Shen, PAN Shi, LI Yuan-Zuo, CHEN Mao-Du.A Comparison of Indoline Dyes as Photosensitizers in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2009,25(10): 2087-2092
68. YANG Shu-Ming, KOU Hui-Zhi, WANG Ling, WANG Hong-Jun, FU Wen-Hong.Photoelectrochemical Properties of N3 Sensitized Ho3+ Modified TiO2 Nanocrystalline Electrodes[J]. Acta Phys. -Chim. Sin., 2009,25(06): 1219-1224
69. NI Zhe-Ming, XU Qian, PAN Guo-Xiang, MAO Jiang-Hong.Theoretical Processing in Understanding the Structures and Properties of Layered Double Hydroxides[J]. Acta Phys. -Chim. Sin., 2009,25(04): 792-805
70. JIAO Yu-Qiu;SUN Qiang;FAN Di.Theoretical Study of Excited States Properties of Au(I) Complexes with Alkynyl[J]. Acta Phys. -Chim. Sin., 2006,22(10): 1196-1200
71. Li Wei-Hua, Hao Yan-Zhong, Qiao Xue-Bin, Zhang Li, Yang Mai-Zhi, Cai Sheng-Min.Photoelectrochemical Studies on the Nanostructured ZnO/Dye/PPy Electrode[J]. Acta Phys. -Chim. Sin., 1999,15(10): 905-910
72. Dai Song-Yuan,Wang Yu,Wu Qin-Chong,Wang Kong-Jia,Huo Yu-Ping.Preparation of Nanometer TiO2 Films by Anodic Oxidative Hydrolysis[J]. Acta Phys. -Chim. Sin., 1996,12(08): 758-760
73. ZHANG Shao-Qing, HOU Jian-Hui.Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top