Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2064-2071    DOI: 10.3866/PKU.WHXB201705103
ARTICLE     
Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3
Qian WU,Wei-Zheng WENG*(),Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN*()
Download: HTML     PDF(1553KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three Nd2O3 samples with cubic phase being the main component phase, denoted as Nd2O3-H, Nd2O3-HT, and Nd2O3-C, were synthesized by hydrolysis, hydrothermal, and combustion methods, respectively. A comparative study of the photo-induced formation of peroxide species on the three Nd2O3 samples was carried out using Raman spectroscopy with a 325 nm laser as the excitation source. After irradiation with the laser of the Raman spectrometer at room temperature in air, peroxide species was detected in all Nd2O3 samples. However, the rate of peroxide formation over Nd2O3-C was much greater than that over the other two samples. This observation can be explained by the differences in the structure and basicity of the surface lattice oxygen (O2-) species of the samples. As evidenced by the results of O2-and CO2-temperature-programmed desorption (TPD) characterizations, the Nd2O3-C sample contains greater number of surface lattice oxygen (O2-) species with low coordination numbers than the other two samples. Moreover, the basicity of the surface O2- species in Nd2O3-C is stronger than that in the Nd2O3-H and Nd2O3-HT samples. Both these factors are in favor of the reaction of lattice oxygen with molecular oxygen to generate peroxide species under photo irradiation.



Key wordsNd2O3      Preparation method      Photo-induced      Peroxide species      Lattice oxygen     
Received: 27 February 2017      Published: 10 May 2017
MSC2000:  O647  
Fund:  the National Key Basic Research Program of China (973)(2013CB933102);National Natural Science Foundation of China(21173173);National Natural Science Foundation of China(21473144);Program for Innovative Research Team in University, China(IRT_14R31)
Corresponding Authors: Wei-Zheng WENG,Hui-Lin WAN     E-mail: wzweng@xmu.edu.cn;hlwan@xmu.edu.cn
Cite this article:

Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3. Acta Phys. -Chim. Sin., 2017, 33(10): 2064-2071.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705103     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2064

Fig 1 Raman spectra of the peroxide formation induced by 325 nm laser (5.5 mW) at 25 ℃ under air over the Nd2O3 synthesized by (a) hydrolysis (Nd2O3-H), (b) hydrothermal (Nd2O3-HT) and (c) combustion (Nd2O3-C) methods, and (d) the intensity ratio of the Raman peaks at 833 and 336 cm-1 (I833/I336) as a function of photo irradiation time for the above three samples.
Sample ABET/(m2·g-1) Pore size/nm
Nd2O3-H 6.7 14.0
Nd2O3-HT 13.6 19.8
Nd2O3-C 9.3 17.8
Table 1 BET surface area (ABET) of the Nd2O3 samples synthesized by hydrolysis (Nd2O3-H), hydrothermal (Nd2O3-HT) and combustion (Nd2O3-C) methods.
Fig 2 XRD patterns of the Nd2O3 synthesized by hydrolysis (Nd2O3-H), hydrothermal (Nd2O3-HT) and combustion (Nd2O3-C) methods.
Fig 3 Raman spectra of the Nd2O3 synthesized by (a) hydrolysis, (b) hydrothermal and (c) combustion methods.
Fig 4 SEM images of the Nd2O3 synthesized by (a) hydrolysis, (b) hydrothermal and (c) combustion methods.
Fig 5 CO2-TPD profiles of the Nd2O3 synthesized by hydrolysis (Nd2O3-H), hydrothermal (Nd2O3-HT) and combustion (Nd2O3-C) methods.
Fig 6 O2-TPD profiles of the Nd2O3 synthesized by hydrolysis (Nd2O3-H), hydrothermal (Nd2O3-HT) and combustion (Nd2O3-C) methods.
1 Panov G. I. ; Dubkov K. A. ; Starokon E. V. Catal. Today 2006, 117 (1), 148.
2 Guo Z. ; Liu B. ; Zhang Q. ; Deng W. ; Wang Y. ; Yang Y. Chem. Soc. Rev. 2014, 43 (10), 3480.
3 Weng W. Z. ; Wan H. L. ; Li J. M. ; Cao Z. X. Angew. Chem. Int. Ed. 2004, 43 (8), 975.
4 Jing X. L. ; Chen Q. C. ; He C. ; Zhu X. Q. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Phys. Chem. Chem. Phys. 2012, 14 (19), 6898.
5 Jing X. L. ; She W. Y. ; Weng W. Z. ; Li J. M. ; Xia W. S. ; Wan H. L. Chin. J. Catal. 2014, 35 (8), 1385.
5 景孝廉; 佘雯瑜; 翁维正; 李建梅; 夏文生; 万惠霖. 催化学报, 2014, 35 (8), 1385.
6 Li J. M. ; Jing X. L. ; Weng W. Z. ; Chang Z. Y. ; An D. L. ; Xia W. S. ; Wan H. L. Scientia Sinica Chimica 2014, 44 (12), 1931.
6 李建梅; 景孝廉; 翁维正; 常泽英; 安冬丽; 夏文生; 万惠霖. 中国科学:化学, 2014, 44 (12), 1931.
7 Jing X. L. ; She W. Y. ; Li J. M. ; Chen Q. C. ; Weng W. Z. ; An D. L. ; Wan H. L. Chem. Asian J. 2015, 10 (10), 2162.
8 Bazzi R. ; Flores-Gonzalez M. A. ; Louis C. ; Lebbou K. ; Dujardin C. ; Brenier A. ; Zhang W. ; Tillement O. ; Bernstein E. ; Perriat P. J. Lumin. 2003, 102-103, 445.
9 Qian H. ; Lin G. ; Zhang Y. ; Gunawan P. ; Xu R. Nanotechnology 2007, 18 (35), 355602.
10 Zawadzki M. ; Kepinski L. J. Alloys Compd. 2004, 380 (1), 255.
11 Zeng W. W. ; Huang K. L. ; Yang Y. P. ; Liu S. Q. ; Liu R. S. Acta Phys. -Chim. Sin. 2008, 24 (2), 263.
11 曾雯雯; 黄可龙; 杨幼平; 刘素琴; 刘人生. 物理化学学报, 2008, 24 (2), 263.
12 Kepinski L. ; Zawadzki M. ; Mista W. Solid State Sci. 2004, 6 (12), 1327.
13 Hayashi H. ; Hakuta Y. Mater. 2010, 3 (7), 3794.
14 Hu H. F. ; He T. Acta Phys. -Chim. Sin. 2016, 32 (2), 543.
14 胡海峰; 贺涛. 物理化学学报, 2016, 32 (2), 543.
15 Chavan S. V. ; Sastry P. U. M. ; Tyagi A. K. J. Alloys Compd. 2008, 456 (1), 51.
16 Umesh B. ; Eraiah B. ; Nagabhushana H. ; Nagabhushana B.M. ; Nagaraja G. ; Shivakumara C. ; Chakradhar R. P. S. J. Alloys Compd. 2011, 509 (4), 1146.
17 Yu R. B. ; Yu K. H. ; Wei W. ; Xu X. X. ; Qiu X. M. ; Liu S. ; Huang W. ; Tang G. ; Ford H. ; Peng B. Adv. Mater. 2007, 19 (6), 838.
18 Sreethawong T. ; Chavadej S. ; Ngamsinlapasathian S. ; Yoshikawa S. Solid State Sci. 2008, 10 (1), 20.
19 Duhan S. ; Aghamkar P. Acta Phys. Pol. A 2008, 113 (6), 1671.
20 Shafer M. W. ; Roy R. J. Am. Ceram. Soc. 1959, 42 (11), 563.
21 Tong J. ; Eyring L. J. Alloys Compd. 1995, 225 (1-2), 139.
22 Ubaldini A. ; Carnasciali M. M. J. Alloys Compd. 2008, 454 (1-2), 374.
23 Abrashev M. V. ; Todorov N. D. ; Geshev J. J. Appl. Phys. 2014, 116 (10), 103508.
24 Lunsford J. H. ; Yang X. ; Haller K. ; Laane J. ; Mestl G. ; Knozinger H. J. Phys. Chem. 1993, 97 (51), 13810.
25 Boldish S. I. ; White W. B. Spectrochim. Acta 1979, 35 (11), 1235.
26 Gopinatht C. R. ; Brown I. D. J. Raman Spectrosc. 1982, 12 (3), 278.
27 Turcotte R. P. ; Sawyer J. O. ; Eyring L. J. Inorg. Chem. 1969, 8 (2), 238.
28 Klingenberg B. ; Vannice M. A. J. Chem. Mater. 1996, 8 (12), 2755.
29 Jiang G. J. ; Zhuang H. R. ; Li W. L. ; Wu F. Y. ; Zhang B. L. Prog. Chem. 1998, 10 (3), 327.
29 江国健; 庄汉锐; 李文兰; 邬凤英; 张宝林. 化学进展, 1998, 10 (3), 327.
30 Auroux A. ; Gervasini A. J. Phys. Chem. 1990, 94 (16), 6371.
31 Choudhary V. R. ; Uphade B. S. ; Mulla S. A. R. Ind. Eng. Chem. Res. 1997, 36 (9), 3594.
32 Choudhary V. R. ; Mulla S. A. R. ; Uphade B. S. Fuel 1999, 78 (4), 427.
33 Yamazoe N. ; Teraoka Y. ; Seiyama T. Chem. Lett. 1981, 10 (12), 1767.
34 Kung, H. H. Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier: Amsterdam, 1989; pp 112-113.
35 Ding W. ; Chen Y. ; Fu X. Catal. Lett. 1994, 23 (1), 69.
36 You R. ; Zhang Y. ; Liu D. ; Meng M. ; Zheng L. ; Zhang J. ; Hu T. J. Phys. Chem. C 2014, 118 (44), 25403.
37 Huang S. J. ; Walters A. B. ; Vannice M. A. J. Catal. 2000, 192 (1), 29.
38 Jiang X. Y. ; Zhou R. X. ; Pan P. ; Zhu B. ; Yuan X. X. ; Zheng X. M. Appl. Catal. A: Gen. 1997, 150 (1), 131.
[1] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[2] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[3] Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1330-1346.
[4] ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 353-359.
[5] DENG Tao-Li, YAN Shi-Run, HU Jian-Guo. Preparation and Up-Conversion Photoluminescence Properties of GdAlO3:Er3+, Yb3+ Phosphors[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 773-780.
[6] HU Yan, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun, TIAN Zhao-Wu. Factors Influencing Hydroxyl Radical Formation in a Photo-Induced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2392-2398.
[7] LIU Yan-Cheng, LI Hai-Xia, CUI Ron-Grong, XU Yu-Lie, WANG Wen-Feng. Phosphate Base Effect on DNA Damage Photo-Induced by Ciprofloxacin[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 212-216.
[8] JIANG Li-Lin, LIU Wei-Long, SONG Yun-Fei, HE Xing, WANG Yang, WU Hong-Lin, YANG Yan-Qiang. Fluorescence and Raman Spectroscopic Characteristics of the Photo-Induced Electron Transfer of Coumarin 343 Dye-Sensitized TiO2 Nanoparticles[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2953-2957.
[9] JIANG Li-Lin, LU Xi-Yin, SONG Yun-Fei, LIU Wei-Long, YANG Yan-Qiang. Effects of Excited State Vibrational Coherence on Photo-Induced Electron Transfer Rates in Dye-Sensitized Nanocrystalline TiO2[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2589-2596.
[10] ZHENG Hua-Rong, WANG Xiao-Wei, LIN Xia-Hui, GENG Qiang, CHEN Xun, DAI Wen-Xin, WANG Xu-Xu. Promoted Effect of Polyethylene Glycol on the Photo-Induced Hydrophilicity of TiO2 Films[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1764-1770.
[11] WANG Feng-Jiao, ZHOU Dan-Hong, ZUO Shi-Ying, CAO Jian-Fang, PENG Xiao-Jun. Theoretical Calculations on the PET Property of BODIPY Fluorescent pH Probes[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1645-1650.
[12] CHENG Hui, DONG Jiang-Zhou, CHAO Hui, YAO Jiang-Hong, CAO Ya-An. Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 850-856.
[13] HU Xiao-Yan, LI Chun-Yi, YANG Chao-He. Influences of V2O5 Loadings on V2O5/Al2O3 Oxidative Activation Performances for n-Heptane Catalytic Cracking[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2209-2216.
[14] YE Qing, ZHAO Jian-Sheng, LI Dong-Hui, ZHAO Jun, CHENG Shui-Yuan, KANG Tian-Fang. Au/SnO2 and M-Au (M=Pt, Pd)/SnO2 Bimetallic Catalysts for the Low-Temperature Catalytic Oxidation of CO[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 169-176.
[15] ZHANG Xiao-Ru, LIN Yan-Hong, ZHANG Jian-Fu, HE Dong-Qing, WANG De-Jun. Photoinduced Charge Carrier Properties and Photocatalytic Activity of N-Doped TiO2 Nanocatalysts[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2733-2738.