Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2092-2098    DOI: 10.3866/PKU.WHXB201705114
ARTICLE     
Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target
Er-Long SONG,Lin-Feng LAN*(),Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG
Download: HTML     PDF(1992KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The sintering condition was studied how to influence the performance of indium-zinc-oxide (IZO) target and thin film transistor (TFT) in this paper. IZO targets was prepared by hot-pressing sintering using mixed power (20% (w, mass fraction) In2O3), then fabricated TFT with above sintering targets. X-ray diffraction (XRD) patterns & scanning electron microscopy (SEM) images showed targets had good crystallinity and elements were uniformly distributed. The target was typical densification process with sintering temperature of 850 ℃. The volatilization of In2O3 undermined the densification of the target, with condition of 900 ℃-60 min. It can be seen that increase of sintering temperature and elongation of preserving time could inhibit the In2O3 volatilization, facilitated the sintering densification of IZO target and formed the InZnOx crystal phase, thereby increased the density of the target. IZO TFTs′ performance showed the sputtering deteriorates the film quality with low-density target, and the grain of the high-density target was slightly abnormal, which resulted in deterioration of the film uniformity, all reduced the performance of TFT. Therefore, an appropriate high-density target was essential for the preparation of IZO-TFT."



Key wordsThin film transistors      IZO      Hot-pressing sintering      Target      Magnetron sputtering     
Received: 13 March 2017      Published: 11 May 2017
MSC2000:  O649  
Fund:  the National Key Research Program of China(2016YFB0401105);National Natural Science Foundation of China(61204087);Pearl River S & T Nova Program of Guangzhou, China(2014J2200053);Guangdong Province Science and Technology Plan, China(2015B090914003)
Corresponding Authors: Lin-Feng LAN     E-mail: lanlinfeng@scut.edu.cn
Cite this article:

Er-Long SONG,Lin-Feng LAN,Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target. Acta Phys. -Chim. Sin., 2017, 33(10): 2092-2098.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705114     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2092

Fig 1 Preparation process of IZO target.
Fig 2 Hot-pressing sintering curve of IZO target.
Fig 3 Structure schematic of IZO-TFT.
Fig 4 XRD patterns of IZO targets fabricated at different conditions. (a) 850 ℃-60 min, (b) 900 ℃-60 min, (c) 950 ℃-60 min, (d) 900 ℃-90 min
ItemT/℃Time/minZn/In molar ratioρ/(g?cm?3)Rate/(nm?min?1)
1850600.90/0.105.1132.70
2900600.93/0.074.8851.94
3950600.90/0.105.6102.38
4900900.88/0.125.3422.69
Table 1 Summarized properties of IZO target with different preparation condition.
Preparation conditionμsat/(cm2?V?1?s?1)Von/VSS/(V?dec?1)Ion/Ioff
850 ℃ -60 min14.61?2.20.221.25 × 107
900 ℃ -60 min11.06?3.20.237.97 × 106
950 ℃ -60 min10.08?3.50.258.89 × 106
900 ℃ -90 min16.25?2.20.272.19 × 107
Table 2 Summarized properties of IZO-TFT with different targets.
Fig 5 SEM patterns of IZO targets fabricated at different conditions. (a) 850 ℃-60 min, (b) 900 ℃-60 min, (c) 950 ℃-60 min, (d) 900 ℃-90 min
Fig 6 EDS element distribution maps for In, Zn and O (respectively with blue, green and red) of IZO targets fabricated at different conditions. (a) 850 ℃-60 min, (b) 900 ℃-60 min, (c) 950 ℃-60 min, (d) 900 ℃-90 min, color online.
Fig 7 UV-visible transmittance spectra of films fabricated with different IZO targets, all film annealed at 400 ℃ for 30 min.
Fig 8 Output characteristic of IZO-TFT with different targets. (a) 850 ℃-60 min, (b) 900 ℃-60 min, (c) 950 ℃-60 min, (d) 900 ℃-90 min
Fig 9 Transfer characteristic of IZO-TFT with different targets, and every device′s curve includes positive sweep and reverse sweep.
Fig 10 (a) positive gate bias stress (VG = 20 V), and (b) negative gate bias stress (VG = -20 V) of IZO-TFT.
1 Park J. S. ; Kim T. W. ; Stryakhilev D. ; Lee J. S. ; An S. G. ; Pyo Y. S. ; Lee D. B. ; Mo Y. G. ; Jin D. U. ; Chung H. K. Appl. Phys. Lett. 2009, 95, 13503.
2 Riedl T. ; Gorrn P. ; Kowalsky W. J. Disp. Technol. 2009, 12 (5), 501.
3 Oh S. ; Bong S. ; Yang Y. ; Kim U. K. ; Sang J. ; Han H. ; Kim S. ; Jeong J. K. ; Kim H J. J. Phys. D: Appl. Phys. 2014, 47, 165103.
4 Park H. W. ; Song A. R. ; Kwon S. ; Ahn B. D. ; Chung K. B. Appl. Phys. Express 2016, 9, 111101.
5 Nomura K. ; Ohta H. ; Takagi A. ; Kamiya T. ; Hirano M. ; Hosono H. Nature 2004, 432, 488.
6 Fortunato E. ; Barquinha P. ; Martins R. Adv. Mater. 2012, 24, 2945.
7 Lan L. F. ; Zhang P. ; Peng J. B. Acta Phys. Sin. 2016, 65 (12), 128504.
7 兰林锋; 张鹏; 彭俊彪. 物理学报, 2016, 65 (12), 128504.
8 Wang X. Y. ; Dong G. F. ; Qiao J. ; Wang L. D. ; Qiu Y. Acta Phys. -Chim. Sin. 2010, 26 (01), 249.
8 王小燕; 董桂芳; 乔娟; 王立铎; 邱勇. 物理化学学报, 2010, 26 (1), 249.
9 Leenheer A. J. ; Perkins J. D. ; Van Hest M. F. ; Berry J. J. ; O'Hayre R. P. ; Ginley D. S. Phys. Rev. B 2008, 77 (12), 115215.
10 Taylor M. P. ; Readey D. W. ; van Hest M. F. A. M. ; Teplin C. W. ; Alleman J. L. ; Dabney M. S. ; Gedvilas L. M. ; Keyes B. M. ; To B. ; Perkins J. D. ; Ginley D. S. Adv. Funct. Mater. 2008, 18, 3169.
11 Zhang G. M. ; Guo L. Q. ; Zhao K. S. ; Yan Z. H. Acta Phys. Sin. 2013, 62 (13), 137201.
11 张耕铭; 郭立强; 赵孔胜; 颜钟惠. 物理学报, 2013, 62 (13), 137201.
12 Li Y. ; Sun C. W. ; Liu Z. W. ; Zhang Q. Y. Acta Phys. Sin. 2006, 55 (8), 4232.
12 李勇; 孙成伟; 刘志文; 张庆瑜. 物理学报, 2006, 55 (8), 4232.
13 Asmar R. A. ; Ferblantier G. ; Mailly F. ; Gall B. P. ; Foucaran A. Thin Solid Films 2005, 473, 49.
14 Zhao J. ; Hu L. ; Liu W. ; Wang Z. Appl. Surf. Sci. 2007, 253, 6255.
15 Tominaga K. ; Murayama T. ; Umezu N. ; Mori I. ; Ushiro T. ; Moriga T. ; Nakabayashi I. Thin Solid Filnls 1999, 343, 160.
16 Ni J. M. ; Cheng J. J. Hubei Univ. Educ. 2012, 29 (2), 71.
16 倪佳苗; 程娟. 湖北第二师范学院学报, 2012, 29 (2), 71.
17 Song E. L. ; Lan L. F. ; Xiao P. ; Lin Z. G. ; Sun S. ; Li Y.Z. ; Song W. ; Gao P. X. ; Peng J. B. IEEE Trans. Electron Devices 2016, 63 (5), 1916.
18 Hua X. ; Lan L. F. ; Li M. ; Luo D. X. ; Xiao P. ; Lin Z. G. ; Ning H. L. ; Peng J. B. Acta Phys. Sin. 2014, 63 (03), 452.
18 徐华; 兰林锋; 李民; 罗东向; 肖鹏; 林振国; 宁洪龙; 彭俊彪. 物理学报, 2014, 63 (03), 452.
19 Guo W. ; Wang W. M. ; Wang H. ; Wang Y. C. ; Fu Z. Y. Adv. Mater. Res. 2009, 66, 96.
20 Guo S. J. Powder sintering theory Beijing: Metallurgical IndustryPress, 1998, p 11.
20 果世驹. 粉末烧结理论, 北京: 冶金工业出版社, 1998, 11.
21 Liu, L. J. Preparation of Zinc Oxide Ceramic Target. M.S. Dissertation, Hebei University of Technology, Tianjin, 2008.
21 刘丽杰.氧化锌陶瓷靶材的制备[D].天津:河北工业大学, 2008.
22 Tong Y. P. ; Lai X. H. ; He W. L China Ceram. Ind. 2013, 20 (2), 6.
22 童义平; 赖秀红; 何午琳. 中国陶瓷工业, 2013, 20 (2), 6.
23 Son K. Y. ; Park D. H. ; Lee J. H. ; Kim J. J. ; Lee J. S. Solid State Ionics 2004, 172, 425.
24 Wu M. W. ; Chang S. H. ; Chaung W. M. ; Huang H. S. J. Eur. Ceram. Soc. 2015, 35, 3893.
25 Bai X. ; Wang X. M. ; Han C. ; Chu M. Y. ; Duo H. Y. ; Sun J. Chin. J. Rare Met. 2011, 35 (6), 892.
25 白雪; 王星明; 韩仓; 储茂友; 段华英; 孙静. 稀有金属, 2011, 35 (6), 892.
[1] Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 348-360.
[2] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[3] Ai-Jing LI,Wei XIE,Ming WANG,Si-Chuan XU. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 927-940.
[4] Wei-Ju HAO,Jun-Qi ZHANG,Ya-Zhuo SHANG,Shou-Hong XU,Hong-Lai LIU. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2628-2635.
[5] LI Hui, LIU Xiang-Xin, ZHANG Yu-Feng, DU Zhong-Ming, YANG Biao, HAN Jun-Feng, BESLAND Marie-Paule. Synthesis of CdS with Large Band Gap Values by a Simple Route at Room Temperature[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1338-1344.
[6] XU Xian-Jin, SU Ji-Guo, LIU Bin, LI Chun-Hua, TAN Jian-Jun, ZHANG Xiao-Yi, CHEN Wei-Zu, WANG Cun-Xin. Reverse Virtual Screening on Persistent Organic Pollutants 4,4’-DDE and CB-153[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2276-2285.
[7] ZHANG Zhu-Qing. Folding Mechanism of De novo Designed Proteins[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2381-2389.
[8] CHEN Peng, TAN Xin, YU Tao. Effects of Total Pressure and Ar/O2 Flow Ratios on Photocatalytic Properties of TiO2 Thin Films Deposited by Direct Current Facing-Target Magnetron Sputtering[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2162-2168.
[9] WEN Wen, GAO Xiao-Ya, SONG Zhi-Ying, HAN Dong, WANG Juan, ZHU Mei-Xia, ZHANG Ai-Ping. Preparation of Magnetic Targeted Fe3O4-TiO2Nanoparticles and Their Photocatalytic Killing Effect on Hepatoma Carcinoma Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2221-2230.
[10] HU Wen-Liang, XU Gang, MA Jian-Wei, XIONG Bin, SHI Ji-Fu. Optical and Phase Transition Properties of TixV1-xO2 Thin Films[J]. Acta Phys. -Chim. Sin., 2012, 28(06): 1533-1538.
[11] HU Yan-Bao, PENG Jing-Bo, GU Shuo, PEI Jian-Feng, ZOU Zhong-Mei. Molecular Docking in Xin-Ke-Shu Preparation's Multi-Target Effect on Coronary Heart Disease[J]. Acta Phys. -Chim. Sin., 2012, 28(05): 1257-1264.
[12] YAN Bing-Xi, LUO Sheng-Yun, SHEN Jie. Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 381-386.
[13] XU Hao, LU Fang, FU Zheng-Wen. Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1232-1238.
[14] TIAN Ran, LIU Zhen-Ming, JIN Hong-Wei, ZHANG Liang-Ren, LIN Wen-Han. Target Identification of Isomalabaricane Terpenes Extracted from Sponges[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1214-1222.
[15] XIAO Lixin, DUAN Laiqiang, CHAI Junyi, WANG Yun, CHEN Zhijian, QU Bo, GONG Qihuang. Fabrication of Large Area of Anodic Aluminum Oxide Ultrathin Film Directly onto an ITO Electrode with a Ti Buffer Layer[J]. Acta Phys. -Chim. Sin., 2011, 27(03): 749-753.