Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2099-2105    DOI: 10.3866/PKU.WHXB201705115
ARTICLE     
Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate
Ya-Nan WANG1,2,Pin MA1,2,Lu-Mei PENG1,Di ZHANG1,2,Yan-Yan FANG1,Xiao-Wen ZHOU1,Yuan LIN1,2,*()
1 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(1558KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx (MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClx lead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClx NCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3 NCs have a long average recombination lifetime (τave = 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.



Key wordsPerovskite      CH3NH3PbBr3-xClx      Nanocrystal      Lead acetate     
Received: 03 April 2017      Published: 11 May 2017
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51303186);the National Natural Science Foundation of China(51673204);National Materials Genome Project, China(2016YFB0700600)
Corresponding Authors: Yuan LIN     E-mail: linyuan@iccas.ac.cn
Cite this article:

Ya-Nan WANG,Pin MA,Lu-Mei PENG,Di ZHANG,Yan-Yan FANG,Xiao-Wen ZHOU,Yuan LIN. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate. Acta Phys. -Chim. Sin., 2017, 33(10): 2099-2105.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705115     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2099

 
 
 
 
 
MAPbBr3?xClxPL peak/nmFWHM/nmτave/nsPLQY/%
x = 0.65052264.6965
x = 1.24702232.2035
x = 1.84362021.9424
x = 2.44162021.3912
x = 3.03991714.548
 
1 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
2 Ke W. ; Fang G. ; Liu Q. ; Xiong L. ; Qin P. ; Tao H. ; Wang J. ; Lei H. ; Li B. ; Wan J. ; Yang G. ; Yan Y. J. Am. Chem. Soc. 2015, 137, 6730.
3 Bi D. ; Tress W. ; Dar M. I. ; Gao P. ; Luo J. ; Renevier C. ; Schenk K. ; Abate A. ; Giordano F. ; Correa Baena J. P. ; Decoppet J. D. ; Zakeeruddin S. M. ; Nazeeruddin M. K. ; Gr?tzel M. ; Hagfeldt A. Sci. Adv. 2016, 2, 1.
4 Wang Y. Q. ; Li L. ; Nie L. H. ; Li N. N. ; Shi C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724.
4 王艳青; 李龙; 聂林辉; 李楠楠; 史成武. 物理化学学报, 2016, 32 (11), 2724.
5 Mejía Escobar M. A. ; Pathak S. ; Liu J. ; Snaith H. J. ; Jaramillo F. ACS App. Mater. Inter. 2017, 9
6 Zhou L. ; Zhu J. ; Xu Y. F. ; Shao Z. P. ; Zhang X. H. ; Ye J. J. ; Huang Y. ; Zhang C. N. ; Dai S. Y. Acta Phys.-Chim. Sin. 2016, 32
6 周立; 朱俊; 徐亚峰; 邵志鹏; 张旭辉; 叶加久; 黄阳; 张昌能; 戴松元. 物理化学学报, 2016, 32 (5), 1207.
7 NREL, B. R. C. E. http://www.nrel.gov, accessed: November 2016.
8 Yin X. ; Xu Z. ; Guo Y. ; Xu P. ; He M. ACS Appl. Mater. Inter. 2016, 8, 29580.
9 Yin X. ; Guo Y. ; Xue Z. ; Xu P. ; He M. ; Liu B. Nano Res. 2015, 8, 1997.
10 Tan Z. K. ; Moghaddam R. S. ; Lai M. L. ; Docampo P. ; Higler R. ; Deschler F. ; Price M. ; Sadhanala A. ; Pazos L.M. ; Credgington D. ; Hanusch F. ; Bein T. ; Snaith H. J. ; Friend R. H. Nat. Nanotech. 2014, 9, 687.
11 Zhang X. ; Liu H. ; Wang W. ; Zhang J. ; Xu B. ; Karen K. L. ; Zheng Y. ; Liu S. ; Chen S. ; Wang K. ; Sun X. W. Adv. Mater. 2017, 1606405- 1/7.
12 Yao Q. ; Fang H. ; Deng K. ; Kan E. ; Jena P Nanoscale 2016, 8, 17836.
13 Cho H. ; Jeong S. H. ; Park M. H. ; Kim Y. H. ; Wolf C. ; Lee C. L. ; Heo J. H. ; Sadhanala A. ; Myoung N. ; Yoo S. Science 2015, 350, 1222.
14 Ling Z. ; Yuan Z. ; Tian. Y. ; Wang X. ; Wang J. C. ; Xin Y. ; Hanson K. ; Ma B. ; Gao H Adv. Mater. 2015, 17, 1.
15 Sichert J. A. ; Tong Y. ; Mutz N. ; Vollmer M. ; Fischer S. ; Milowska K. Z. ; García Cortadella R. ; Nickel B. ; Cardenas-Daw C. ; Stolarczyk J. K. ; Urban A. S. ; Feldmann J. Nano Lett. 2015, 15, 6521.
16 Tyagi P. ; Arveson S. M. ; Tisdale W. A. J. Phys. Chem. Lett. 2015, 6, 1911.
17 Tong Y. ; Ehrat F. ; Vanderlinden W. ; Cardenas-Daw C. ; Stolarczyk J. K. ; Polavarapu L. ; Urban A. S. ACS Nano 2016, 10, 10936.
18 Hassan Y. ; Song Y. ; Pensack R. D. ; Abdelrahman A. I. ; Kobayashi Y. ; Winnik M. A. ; Scholes G. D. Adv. Mater. 2016, 28, 566.
19 Di D. ; Musselman K. P. ; Li G. ; Sadhanala A. ; Ievskaya Y. ; Song Q. ; Tan Z. K. ; Lai M. L. ; MacManus-Driscoll J. L. ; Greenham N. C. J. Phys. Chem. Lett. 2015, 6 (3), 446.
20 Huang H. ; Susha A. S. ; Kershaw S. V. ; Hung T. F. ; Rogach A. L. Adv. Sci. 2015, 2 (9), 1500194- 1.
21 Bhaumik S. ; Veldhuis S. A. ; Ng Y. F. ; Li M. ; Muduli S. K. ; Sum T. C. ; Damodaran B. ; Mhaisalkar S. ; Mathews N. Chem. Commun. 2016, 52, 7118.
22 Gonzalez-Carrero S. ; Galian R. E. ; Pérez-Prieto J. J. Mater. Chem. A 2015, 3, 9187.
23 Schmidt L. C. ; Pertegás A. ; González-Carrero S. ; Malinkiewicz O. ; Agouram S. ; Mínguez Espallargas G. ; Bolink H. J. ; Galian R. E. ; Pérez-Prieto J. J. Am. Chem. Soc. 2014, 136, 850.
24 Zhang F. ; Zhong H. ; Chen C. ; Wu X. G. ; Hu X. ; Huang H. ; Han J. ; Zou B. ; Dong Y. ACS Nano 2015, 9 (4), 4533.
25 Naphade R. ; Nagane S. ; Shanker G. S. ; Fernandes R. ; Kothari D. ; Zhou Y. ; Padture N. P. ; Ogale S. ACS Appl. Mater. Inter. 2016, 8, 854.
26 Sadhanala A. ; Ahmad S. ; Zhao B. ; Giesbrecht N. ; Pearce P.M. ; Deschler F. ; Hoye R. L. Z. ; G?del K. C. ; Bein T. ; Docampo P. ; Dutton S. E. ; De Volder M. F. L. ; Friend R. H. Nano Lett. 2015, 15, 6095.
27 Pathak S. ; Sakai N. ; Wisnivesky Rocca Rivarola F. ; Stranks S. D. ; Liu J. W. ; Eperon G. E. ; Ducati C. ; Wojciechowski K. ; Griffiths J. T. ; Haghighirad A. A. ; Pellaroque A. ; Friend R. H. ; Snaith H. J. Chem. Mater. 2015, 27, 8066.
28 Zhang W. ; Saliba M. ; Moore D. T. ; Pathak S. K. ; H?rantner M. T. ; Stergiopoulos T. ; Stranks S. D. ; Eperon G. E. ; Alexander-Webber J. A. ; Abate A. ; Sadhanala A. ; Yao S. ; Chen Y. ; Friend R. H. ; Estroff L. A. ; Wiesner U. ; Snaith H. J. Nat. Commun. 2015, 6, 6142.
29 Zhuo S. ; Zhang J. ; Shi Y. ; Huang Y. ; Zhang B. Angew Chem. Inter. Edit. 2015, 54, 5693.
30 Comin R. ; Walters G. ; Thibau E. S. ; Voznyy O. ; Lu Z. H. ; Sargent E. H. J. Mater. Chem. C 2015, 3, 8839.
31 Zhao Y. ; Riemersma C. ; Pietra F. ; Koole R. ; de MelloDonegá C. ; Meijerink A. ACS Nano 2012, 6, 9058.
[1] LIU Zhiming, LIU Guoliang, HONG Xinlin. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222.
[2] Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75.
[3] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[4] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[5] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[6] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[7] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[8] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[9] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[10] Xiao-Qin ZHOU,Hui ZHANG,Ze ZHANG,Xin CHEN,Chuan-Hong JIN. Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by In situ Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 458-463.
[11] Wei-Yan LIU,Ya-Dong LI,Tian LIU,Lin GAN. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2106-2112.
[12] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[13] Qian-Rui LÜ,Jing LI,Zhi-Peng LIAN,Hao-Yan ZHAO,Gui-Fang DONG,Qiang LI,Li-Duo WANG,Qing-Feng YAN. CH3NH3PbI3 Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5 as the Top Gate Dielectric[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 249-254.
[14] Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.
[15] Han XU,Ye-Xiang TONG,Gao-Ren LI. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2171-2184.