Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2013-2021    DOI: 10.3866/PKU.WHXB201705113
ARTICLE     
Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures
Tao-Na ZHANG1,Xue-Wen XU1,Liang DONG2,Zhao-Yi TAN2,Chun-Li LIU1,*()
1 Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
2 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
Download: HTML     PDF(1675KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, molecular dynamics simulations were performed to gain insight into the adsorption and diffusion behavior of uranyl carbonate species on pyrophyllite basal surface at various temperatures (298.15, 313.15, and 333.15 K). At these temperatures, four kinds of uranium species, i.e. UO22+, UO2CO3, UO2(CO3) 22-, UO2(CO3) 34-, and uranyl oligomers were obtained. According to the atomic density profile of each uranyl species, only UO22+ and UO2CO3 were adsorbed on the pyrophyllite surface. Therefore, due to the strong coordination interaction between carbonate ion and uranyl, the pyrophyllite surface exhibited weak adsorption capacity for uranium after prolonged simulations. Self-diffusion coefficients of water molecules and uranyl species in both the adsorbed layer and the diffuse layer were calculated. With increasing temperature, the diffusion coefficients for all species increased; however, in the adsorbed layer, the diffusion coefficients for UO2(CO3) 22- and UO2(CO3) 34- increased faster than those for UO22+ and UO2CO3. Nonetheless, the diffuse order remained unchanged in both the layers: UO22+ > UO2CO3 > UO2(CO3) 22- > UO2(CO3) 34-. This indicates that UO22+ is the main diffusing species.



Key wordsPyrophyllite      Uranyl      Molecular dynamic simulation      Temperature      Adsorption      Diffusion     
Received: 11 April 2017      Published: 11 May 2017
MSC2000:  O643  
Fund:  the Special Foundation for High-Level Radioactive Waste Disposal, China(2007-840);the Special Foundation for High-Level Radioactive Waste Disposal, China(2012-851);National Natural Science Foundation of China(U1530112);National Natural Science Foundation of China(11475008);National Natural Science Foundation of China(11075006);National Natural Science Foundation of China(91026010)
Corresponding Authors: Chun-Li LIU     E-mail: liucl@pku.edu.cn
Cite this article:

Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705113     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2013

Fig 1 A snapshot of the pyrophyllite-water interface before simulation. Atoms are colored as follows: U (blue), Na (green), C (gray), O (red), H (white), Si (yellow), Al (violet). color online.
Fig 2 Changes in coordination numbers of uranyl with water oxygen, with carbonate oxygen, and the total equatorial CN over time.
Fig 3 Structure of uranyl carbonate oligomers at different temperatures after 10 ns simulations. (a) 298.15 K, (b) 313.15 K and (c) 333.15 K. Dotted lines marked with the value of U——OC distance, with units of nm. Aqueous species are colored as follows: U (blue), C (gray), O (red), H (white). color online.
Fig 4 Atomic density profiles for uranyl in 10 ns. color online.
Time/ns Adsorption percentage/%
298.15 K 313.15 K 333.15 K
121.816.216.5
213.811.210.5
513.66.66.7
107.53.94.0
Table 1 Adsorption percentages of uranyl at different time and temperatures.
Fig 5 Atomic density profiles for (a) UO22+, (b) UO2CO3, (c) UO2(CO3)22-, (d) UO2(CO3)34- at 333.15 K. color online.
Fig 6 Atomic density profiles for water oxygen and hydrogen at 298.15 K.
T/K1010 Diffusion coefficient (adsorbed layer)/(m2·s-1)1010 Diffusion coefficient (diffuse layer)/(m2·s-1)
UO22+ UO2CO3 UO2(CO3)22- UO2(CO3)34- H2OUO22+ UO2CO3 UO2(CO3)22- UO2(CO3)34- H2O
298.155.4 ± 0.44.0 ± 1.51.0 ± 0.212.4 ± 1.2 16.7 ± 0.813.7 ± 0.69.2 ± 0.33.8 ± 1.126.8 ± 0.6
313.1512.2 ± 2.75.4 ± 0.52.6 ± 1.11.3 ± 0.332.0 ± 1.527.6 ± 1.418.9 ± 3.810.6 ± 1.16.8 ± 2.492.2 ± 0.5
333.1517.0 ± 4.212.3 ± 2.17.3 ± 1.46.1 ± 0.780.8 ± 2.244.8 ± 8.020.8 ± 6.117.9 ± 2.312.2 ± 2.3194.4 ± 7.9
Kerisit670-5.60-4.03.4-22.45.6-7.84.0-7.422.4-25.5
Table 2 Diffusion coefficients of uranyl species and water molecule
1 Huang J. W. ; Blaylock M. J. ; Kapulnik Y. ; Ensley B. D. Environ. Sci. Technol. 1998, 32, 2004.
2 Gregory K. B. ; Lovley D. R. Environ. Sci. Technol. 2005, 39, 8943.
3 McKinley J. P. ; Zachara J. M. ; Liu C. ; Heald S. C. ; Prenitzer B.I. ; Kempshall B. W. Geochim. Cosmochim. Acta 2006, 70, 1873.
4 Geckeis H. ; Lützenkirchen J. ; Polly R. ; Rabung T. ; Schmidt M. Chem. Rev. 2013, 113, 1016.
5 Anirudhan T. ; Bringle C. ; Rijith S. J.Environ. Radioact. 2010, 101, 267.
6 Campos B. ; Aguilar-Carrillo J. ; Algarra M. ; Gon?alves M. A. ; Rodríguez-Castellón E. ; da Silva J. C. E. ; Bobos I. Appl. Clay Sci. 2013, 85, 53.
7 Dong W. ; Tokunaga T. K. ; Davis J. A. ; Wan J. Environ. Sci. Technol. 2012, 46, 1565.
8 Sachs S. ; Bernhard G. Chemosphere 2008, 72, 1441.
9 Arai Y. ; Marcus M. A. ; Tamura N. ; Davis J. A. ; Zachara J. M. Environ. Sci. Technol. 2007, 41, 4633.
10 Malin J. N. ; Geiger M. J.Phys. Chem. A 2010, 114, 1797.
11 Tan X. ; Fang M. ; Wang X. Molecules 2010, 15, 8431.
12 Rihs S. ; Gaillard C. ; Reich T. ; Kohler S. J. Chem. Geol. 2014, 373, 59.
13 Krepelová A. ; Reich T. ; Sachs S. ; Drebert J. ; Bernhard G. J.Colloid Interface Sci. 2008, 319, 40.
14 Walter M. ; Arnold T. ; Geipel G. ; Scheinost A. ; Bernhard G. J.Colloid Interface Sci. 2005, 282, 293.
15 Fernandes M. M. ; Baeyens B. ; D?hn R. ; Scheinost A. ; Bradbury M. Geochim. Cosmochim. Acta 2012, 93, 262.
16 Krepelová A. ; Brendler V. ; Sachs S. ; Baumann N. ; Bernhard G. Environ. Sci. Technol. 2007, 41, 6142.
17 Steudtner R. ; Sachs S. ; Schmeide K. ; Brendler V. ; Bernhard G. Radiochim. Acta 2011, 99, 687.
18 Stejskal E. O. ; Tanner J. E. J.Chem. Phys. 1965, 42, 288.
19 Northrop J. H. ; Anson M. L. J.Gen. Physiol. 1929, 12, 543.
20 Roques J. ; Veilly E. ; Simoni E. Int. J. Mol. Sci. 2009, 10, 2633.
21 Perron H. ; Roques J. ; Domain C. ; Drot R. ; Simoni E. ; Catalette H. Inorg. chem. 2008, 47, 10991.
22 Sebbari K. ; Roques J. ; Simoni E. ; Domain C. ; Perron H. ; Catalette H. Surf. Sci. 2012, 606, 1135.
23 Polly R. ; Schimmelpfennig B. ; Rabung T. ; Fl?rsheimer M. ; Klenze R. ; Geckeis H. Radiochim. Acta 2010, 98, 627.
24 Martorell B. ; Kremleva A. ; Krüger S. ; R?sch N. J.Phys. Chem. C 2010, 114, 13287.
25 Glezakou V. A. ; deJong W. A. J.Phys. Chem. A 2011, 115, 1257.
26 Kremleva A. ; Krüger S. ; R?sch N. Langmuir 2008, 24, 9515.
27 Kremleva A. ; Martorell B. ; Krüger S. ; R?sch N. Phys. Chem. Chem. Phys. 2012, 14, 5815.
28 Greathouse J. A. ; Cygan R. T. Environ. Sci. Technol. 2006, 40, 3865.
29 Liu X. ; Wang L. ; Zheng Z. ; Kang M. ; Li C. ; Liu C. J.Hazard. Mater. 2013, 244, 21.
30 Kerisit S. ; Liu C. Environ. Sci. Technol. 2014, 48, 3899.
31 Yang W. ; Zaoui A. J.Hazard. Mater. 2013, 261, 224.
32 Doudou S. ; Vaughan D. J. ; Livens F. R. ; Burton N. A. Environ. Sci. Technol. 2012, 46, 7587.
33 Kerisit S. ; Liu C. Geochim. Cosmochim. Acta 2010, 74, 4937.
34 Yang W. ; Zaoui A. Appl. Clay Sci. 2013, 80, 98.
35 Gruner J. W. Cryst. Mater. 1934, 88, 412.
36 Lee J. H. ; Guggenheim S. Am. Mineral. 1981, 66, 350.
37 Clark D. L. ; Hobart D. E. ; Neu M. P. Chem. Rev. 1995, 95, 25.
38 Cygan R. T. ; Liang J. J. ; Kalinichev A. G. J.Phys. Chem. B 2004, 108, 1255.
39 Mizan T. I. ; Savage P. E. ; Ziff R. M. J.Phys. Chem. 1994, 98, 13067.
40 Teleman O. ; J?nsson B. ; Engstr?m S. Mol. Phys. 1987, 60, 193.
41 Marry V. ; Dubois E. ; Malikova N. ; Durand-Vidal S. ; Longeville S. ; Breu J. Environ. Sci. Technol. 2011, 45, 2850.
42 Tournassat C. ; Chapron Y. ; Leroy P. ; Bizi M. ; Boulahya F. J.Colloid Interface Sci. 2009, 339, 533.
43 Kerisit S. ; Liu C. Environ. Sci. Technol. 2009, 43, 777.
44 Guilbaud P. ; Wipff G. J.Mol. Struct.: THEOCHEM 1996, 366, 55.
45 Greathouse J. A. ; O'Brien R. J. ; Bemis G. ; Pabalan R. T. J.Phys. Chem. B 2002, 106, 1646.
46 Greathouse J. A. ; Cygan R. T. Phys. Chem. Chem. Phys. 2005, 7, 3580.
47 ?renS.; ?aykaraT.; Kantoglu?.; GüvenO.. J.Appl. Polym. Sci., 2000, 78, 2219.
48 Arai Y. ; McBeath M. ; Bargar J. ; Joye J. ; Davis J. Geochim. Cosmochim. Acta 2006, 70, 2492.
49 Wang J. ; Peng R. ; Yang J. ; Liu Y. ; Hu X. Carbohydr. Polym. 2011, 84, 1169.
50 Cao Q. ; Huang F. ; Zhuang Z. ; Lin Z. Nanoscale 2012, 4, 2423.
51 Plimpton S. J.Comput. Phys. 1995, 117, 1.
52 Hoover W. G. Phys. Rev. A 1985, 31, 1695.
53 Melchionna S. ; Ciccotti G. ; Lee Holian B. Mol. Phys. 1993, 78, 533.
54 Ewald P. P. Ann. Phys. 1921, 369, 253.
55 Liu P. ; Harder E. ; Berne B. J.Phys. Chem. B 2004, 108, 6595.
56 Allen P. G. ; Bucher J. J. ; Clark D. L. ; Edelstein N. M. ; Ekberg S. A. ; Gohdes J. W. ; Hudson E. A. ; Kaltsoyannis N. ; Lukens W. W. ; Neu M. P. ; Palmer P. D. ; Reich T. ; Shuh D.K. ; Tait C. D. ; Zwick B. D. Inorg. Chem. 1995, 34, 4797.
57 Meinrath G. J.Radioanal. Nucl. Chem. 1996, 211, 349.
58 Maya L. ; Begun G. J.Inorg. Nucl. Chem. 1981, 43, 2827.
59 Schlegel M. L. ; Descostes M. Environ. Sci. Technol. 2009, 43, 8593.
60 Den Auwer C. ; Simoni E. ; Conradson S. ; Madic C. J.Inorg. Chem. 2003, 2003, 3843.
61 Kerisit S. ; Liu C. J.Phys. Chem. A 2013, 117, 6421.
62 Chessin H. ; Hamilton W. C. ; Post B. Acta Crystallogr. 1965, 18, 689.
63 Rahman A. Phys. Rev. 1964, 136, A405.
64 Kelly S. D. ; Kemner K. M. ; Brooks S. C. Geochim. Cosmochim. Acta 2007, 71, 821.
65 De Jong W. A. ; Aprà E. ; Windus T. L. ; Nichols J. A. ; Harrison R. J. ; Gutowski K. E. ; Dixon D. A. J.Phys. Chem. A 2005, 109, 11568.
66 Zhang L. ; Su J. ; Yang S. ; Guo X. ; Jia Y. ; Chen N. ; Zhou J. ; Zhang S. ; Wang S. ; Li J. ; Li J. ; Wu G. ; Wang J. Ind. Eng. Chem. Res. 2015, 55, 4224.
67 Kerisit S. ; Liu C. Environ. Sci. Technol. 2012, 46, 1632.
68 Mills R. J.Phys. Chem. 1973, 77, 685.
[1] DONG Ganxing, JIN Chuanhong. Probing the Controlled Oxidative Etching of Palladium Nanorods by Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 15-21.
[2] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[3] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[4] Ágnes NAGY. Phase Space View of Ensembles of Excited States[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 492-496.
[5] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[6] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[7] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[8] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[9] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[10] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[11] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[12] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[13] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[14] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[15] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.