Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2029-2034    DOI: 10.3866/PKU.WHXB201705121
ARTICLE     
4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays
Jun-Jun CHEN,Cheng-Wu SHI*(),Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI
Download: HTML     PDF(1503KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A compact PbS quantum-dot thin film was prepared using the combination of TiO2 nanorod arrays and 1, 2-ethanedithiol following the spin-coating assisted successive ionic layer absorption and reaction procedure. Solar cells with the novel structure of FTO/compact PbS quantum-dot thin film sensitized TiO2 nanorod arrays/spiro-OMeTAD/Au were assembled. Subsequently, the influence of the length of TiO2 nanorod arrays on the photovoltaic performance of all-solid-state compact PbS quantum-dot thin film sensitized solar cells was evaluated. The corresponding solar cells having TiO2 nanorod array lengths of 290, 540, and 1040 nm achieved photoelectric conversion efficiencies (PCE) of 2.02%, 4.81%, and 1.95%, respectively. These results reveal that in order to achieve high PCE values with the all-solid-state quantum dot sensitized solar cells, it is very important to balance the hole diffusion length with the loading amount of quantum-dots.



Key wordsCompact PbS quantum-dot thin film      TiO2 nanorod array      1, 2-Ethanedithiol      Successive ionic layer adsorption and reaction      Solid-state quantum-dot sensitized solar cell     
Received: 20 February 2017      Published: 12 May 2017
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(51272061);the National Natural Science Foundation of China(51472071)
Corresponding Authors: Cheng-Wu SHI     E-mail: shicw506@foxmail.com; shicw506@hfut.edu.cn
Cite this article:

Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705121     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2029

 
Growth time/min Length/nm Diameter/nm Areal density/μm-2
75 290 15 710
100 540 20 530
120 1040 24 300
 
 
 
 
 
 
 
TiO2 nanorod array length/nm Hole transporting layer Voc/V Jsc/(mA·cm-2) FF/% PCE/%
290 With spiro-OMeTAD 0.52 6.65 58.86 2.02
540 With spiro-OMeTAD 0.51 15.32 61.24 4.81
1040 With spiro-OMeTAD 0.55 6.94 51.29 1.95
540 Without spiro-OMeTAD 0.52 4.63 47.10 1.13
 
 
1 González-Pedro V. ; Sima C. ; Marzari G. ; Boix P. P. ; Giménez S. ; Shen Q. ; Dittrich T. ; Mora-Seró I. Phys. Chem. Chem. Phys. 2013, 15, 13835.
2 Zhang X. ; Justo Y. ; Maes J. ; Walravens W. ; Zhang J. ; Liu J. ; Hens Z. ; Johansson E. M. J. J. Mater. Chem. A 2015, 3, 20579.
3 Jang J. ; Shim H. C. ; Ju Y. ; Song J. H. ; An H. ; Yu J. S. ; Kwak S. W. ; Lee T. M. ; Kim I. ; Jeong S. Nanoscale 2015, 7, 8829.
4 Gao J. ; Perkins C. L. ; Luther J. M. ; Hanna M. C. ; Chen H. Y. ; Semonin O. E. ; Nozik A. J. ; Elingson R. J. ; Beard M. C. Nano Lett. 2011, 11, 3263.
5 Lan X. ; Voznyy O. ; Kiani A. ; Garcia de Arquer F. P. ; Abbas A. S. ; Kim G. H. ; Liu M. ; Yang Z. ; Walters G. ; Xu J. ; Yuan M. ; Ning Z. ; Fan F. ; Kanjanaboos P. ; Kramer I. ; Zhitomirsky D. ; Lee P. ; Perelgut A. ; Hoogland S. ; Sargent E. H. Adv. Mater. 2016, 28, 299.
6 Jiao S. ; Wang J. ; Shen Q. ; Li Y. ; Zhong X. J.Mater. Chem. A 2016, 4, 7214.
7 Im S. H. ; Kim H. ; Kim S. W. ; Kim S. W. ; Seok S. I. Energy Environ. Sci. 2011, 4, 4181.
8 Tao L. ; Xiong Y. ; Liu H. ; Shen W. Nanoscale 2014, 6, 931.
9 Han M. ; Jia J. ; Yu L. ; Yi G. RSC Adv. 2015, 5, 51493.
10 Kim H. S. ; Lee J. W. ; Yantara N. ; Boix P. P. ; Kulkarni S. A. ; Mhaisalkar S. ; Gr?tzel M. ; Park N. G. Nano Lett. 2013, 13, 2412.
11 Liu B. ; Aydil E. S. J.Am. Chem. Soc. 2009, 131, 3985.
12 Zhang J. ; Shi C. ; Chen J. ; Wang Y. ; Li M. J.Solid State Chem. 2016, 238, 223.
13 Wu N. ; Shi C. ; Ying C. ; Zhang J. ; Wang M. Appl. Surf. Sci. 2015, 357, 2372.
14 Wang Y. Q. ; Li L. ; Nie L. H. ; Li N. N. ; Shi C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724.
14 王艳青; 李龙; 聂林辉; 李楠楠; 史成武. 物理化学学报, 2016, 32, 2724.
15 Jung J. Y. ; Zhou K. ; Um H. D. ; Guo Z. ; Jee S. W. ; Park K.T. ; Lee J. H. Opt. Lett. 2011, 36, 2677.
16 Yu L. ; Jia J. ; Yi G. ; Han M. RSC Adv. 2016, 6, 33279.
[1] Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2731-2736.
[2] DING Xu-Kun, LI Xiao-Min, GAO Xiang-Dong, ZHANG Shu-De, HUANG Yu-Di, LI Hao-Ran. Optical and Electrical Properties of CH3NH3PbI3 Perovskite Thin Films Transformed from PbO-PbI2 Hybrid Films[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 576-582.
[3] ZHANG Qiao-Bao, FENG Zeng-Fang, HAN Nan-Nan, LIN Ling-Ling, ZHOU Jian-Zhang, LIN Zhong-Hua. Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes[J]. Acta Phys. -Chim. Sin., 2010, 26(11): 2927-2934.