Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 1978-1988    DOI: 10.3866/PKU.WHXB201705124
ARTICLE     
Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions
Bin YE1,Jian ZHANG2,Cai GAO1,*(),Jing-Chun TANG1
1 School of Automobile and Transportation Engineering, Hefei University of Technology, Hefei 230009, P. R. China
2 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, P. R. China
Download: HTML     PDF(1885KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, 1H nuclear magnetic resonance (NMR) measurements and quantum chemistry (QC) studies of ethanol (ET)-water mixtures and ethylene glycol (EG)-water mixtures are carried out at different temperatures to discuss the interactions between water and the alcohols present in the mixtures. From 1H NMR spectra, it is observed that the chemical shift of the water proton shows two different trends in the ET-water mixtures and the EG-water mixtures. With increasing water concentration, the water proton chemical shift decreases dramatically for ET-water mixtures, while the chemical shift increases slowly for EG-water mixtures. The alcohol hydroxyl proton resonance peaks of both ET and EG shift to lower field with decreasing water concentration. It is found that the resonance peaks of all alkyl protons shift monotonically to low field with increasing alcohol concentration at different temperatures. The geometry optimization results indicate the formation of H-bonds between the water molecules and the hydroxyl groups of the alcohols alongside the weakening of O-H bonds in the alcohols, which results in an O-H bond length decrease. It is interesting to note that the bond length values computed for C-C, C-H and O-H bond in both ET and EG are larger when calculated at the density functional theory (DFT) (B3LYP) level than when calculated using Hartree-Fock (HF) level of theory with the same polarization function and diffusion function. However, the O-H…O H-bond computed at HF level of theory is stronger than that calculated at DFT level of theory. The theoretical results are in good agreement with the experimental ones. In the calculation of NMR chemical shift, DFT(B3LYP) is better than HF, which implies that for the same method, the larger the basis sets are, the more accurate are the calculated values.



Key wordsEthanol      Ethylene glycol      1H Nuclear magnetic resonance      Chemical shift      Hartree-Fork level of theory      Density functional theory     
Received: 06 April 2017      Published: 12 May 2017
MSC2000:  O641  
Corresponding Authors: Cai GAO     E-mail: gao_cai@hotmail.com
Cite this article:

Bin YE,Jian ZHANG,Cai GAO,Jing-Chun TANG. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions. Acta Phys. -Chim. Sin., 2017, 33(10): 1978-1988.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705124     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/1978

 
 
 
 
 
 
 
AtomAtomAngle atomHF/6-311 G++(d, p) levelB3LYP/6-311 G++(d, p) level
bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15140.1517
H(3)C(1)C(2)0.1086110.3500.1093110.546
H(4)C(1)C(2)0.1085110.4590.1093110.545
H(5)C(1)C(2)0.1085110.4590.1094110.436
H(6)C(2)C(1)0.1089110.0400.1098110.162
H(7)C(2)C(1)0.1089110.0400.1098110.162
O(8)C(2)C(1)0.1406108.3890.1431107.988
H(9)O(8)C(2)0.0940110.1990.0962108.972
 
AtomAtomAngle atomHF/6-311 G++(d, p) levelB3LYP/6-311 G++(d, p) levelHF/6-311 G(d) level
bond length/nmangle/(°)bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15170.15190.1513
H(3)C(1)C(2)0.1086110.7070.1096110.7960.1085110.756
H(4)C(1)C(2)0.1086110.7030.1096110.5790.1084110.573
H(5)C(1)C(2)0.1086110.1040.1096110.4070.1084110.562
H(6)C(2)C(1)0.1087110.2320.1099110.1650.1086110.247
H(7)C(2)C(1)0.1087110.2450.1100110.2910.1087110.347
O(8)C(2)C(1)0.1412108.8490.1433108.7870.1409108.743
H(9)O(8)C(2)0.0968110.5570.0988107.8890.0946109.975
H(11)O(10)H(12)0.0949106.6120.987104.0480.0946107.617
O(8)H(11)O(10)0.2047170.5120.1837170.8230.1989170.366
O(13)H(9)O(8)0.2141145.4140.1855154.4560.1998152.546
H(14)O(10)O(13)0.2096170.3380.1842170.0540.1998170/683
 
AtomAtomAngle atomHF/6-311 G(d) levelB3LYP/6-311 G(d) level
bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15070.1511
H(3)C(1)C(2)0.1089109.0390.1101108.827
H(4)C(1)C(2)0.1087108.6760.1098108.354
H(5)C(2)C(1)0.1089109.0390.1101108.827
H(6)C(2)C(1)0.1087108.6760.1098108.353
O(7)C(2)C(1)0.1399109.0090.1421108.798
H(8)O(7)C(2)0.0939110.3370.0962108.680
O(9)C(1)C(2)0.1399109.0090.1422108.798
H(10)O(9)C(1)0.0939110.3360.0962108.679
 
AtomAtomAngle atomHF/6-311 G(d) levelB3LYP/6-311 G(d) levelB3LYP/6-311 G++(d, p) level
bond length/nmangle/(°)bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15160.15220.1524
H(3)C(1)C(2)0.1083109.2550.1093109.0410.1093108.832
H(4)C(1)C(2)0.1086109.9900.1095109.9670.1095110.189
H(5)C(2)C(1)0.1085109.0130.1094108.5820.1095108.432
H(6)C(2)C(1)0.1084109.5620.1094109.5320.1094109.989
O(7)C(2)C(1)0.1409111.4230.1433112.3560.1437112.179
H(8)O(7)C(2)0.0959109.6920.0978107.9960.0981107.576
O(9)C(1)C(2)0.1409112.4900.1433113.3090.1436113.124
H(10)O(9)C(1)0.0958108.9830.0982106.9020.0977106.813
O(11)H(10)O(9)0.1955157.3470.1781158.5610.1885155.792
H(12)O(7)H(11)0.1982171.1420.1802172.1640.1846172.296
H(8)O(14)O(7)0.1876166.8720.1715168.5220.1795168.423
H(16)O(17)O(14)0.1877165.6490.1722168.0280.1787166.191
H(18)O(9)O(17)0.1924175.9180.1767176.4560.1800175.819
 
Atom theory level1H NMR chemical shift /
EXPHF/6-31GHF/6-311GHF/6-311G++(d, p)B3LYP/6-31GB3LYP/6-311GB3LYP/6-311G++(d, p)
H(8) H(10)5.294.674.735.025.455.365.27
H(12) H(13) H(15) H(16) H(18) H(19)5.024.584.764.885.255.125.04
H(3) H(4) H(5) H(6)3.673.823.753.613.793.743.60
 
 
1 Raman M. S. ; Ponnuswamy V. ; Kolandaivel P. ; Perumal K. J. Mol. Liq. 2007, 135 (1-3), 46.
2 Fang Y. J. ; Zhou P. Sep. Sci. Technol. 2006, 41 (2), 329.
3 Zhou Y. ; Hu K. ; Shen J. ; Wu X. ; Cheng G. J. Mol. Struct. 2009, 921 (1), 150.
4 Chen C. ; Li W. Z. Acta Phys. -Chim. Sin. 2009, 25 (3), 507.
4 陈聪; 李维仲. 物理化学学报, 2009, 25 (3), 507.
5 Zhao J. F. ; Sun X. L. ; Li J. L. ; Huang X. R. Acta Phys. -Chim. Sin. 2015, 31 (6), 1077.
5 赵俊凤; 孙小丽; 李吉来; 黄旭日. 物理化学学报, 2015, 31 (6), 1077.
6 Gao C. ; Wang T. J. ; Liu X. N. ; Zhou G. Y. ; Hua T. C. Chin. J. Chem. Phys. 2007, 20 (3), 258.
7 Ye B. ; Gao C. ; Liu X. N. ; Yang S. ; Jiang B. Acta Phys. -Chim. Sin. 2011, 27 (5), 1031.
7 叶斌; 高才; 刘向农; 杨锁; 江斌. 物理化学学报, 2011, 27 (5), 1031.
8 Sengwa R. J. ; Sankhla S. ; Shinyashiki N. J. Phys. Chem. 2008, 94 (17), 6889.
9 Ye B. ; Gao C. ; Zhao H. ; Chen K. S. ; Yang S. ; Liu X. N. Acta Phys. -Chim. Sin. 2011, 27 (11), 2505.
9 叶斌; 高才; 赵韩; 陈开松; 杨锁; 刘向农. 物理化学学报, 2011, 27 (11), 2505.
10 Zhang N. ; Li W. Z. ; Chen C. ; Zuo J. ; Weng L. D. Bull. Korean Chem. Soc. 2013, 34 (9), 2711.
11 Zhang N. ; Li W. Z. ; Chen C. ; Zuo J. ; Weng L. D. Mol. Phys. 2013, 111 (7), 939.
12 Chen C. ; Li W. Z. ; Song Y. C. ; Weng L. D. ; Zhang N. Mol. Phys. 2012, 110 (5), 283.
13 Lee M. ; Hong M. J. Biomol. NMR 2014, 59 (4), 263.
14 Raman M. S. ; Ponnuswamy V. ; Kolandaivel P. ; Perumal K. J. Mol. Liq. 2008, 142 (1-3), 10.
15 Mizuno K. ; Miyashita Y. ; Shindo Y. ; Ogawa H. J. Phys. Chem. 1995, 99 (10), 3225.
16 Zhang S. ; Yang P. J. Chin. Soc. Corros. Prot. 2004, 24 (4), 240.
16 张士国; 杨频. 中国腐蚀和防护学报, 2004, 24 (4), 240.
17 Zarzycki P. ; Rustad J. R. J. Phys. Chem. A 2009, 113 (1), 291.
18 Lüsse S. ; Arnold K. Macromolecules 1996, 29 (12), 4251.
19 Song B. T. ; Chu Y. Y. ; Wang J. Q. ; Zheng A. M. ; Deng F. Chin. J. Magn. Reson. 2016, 33 (3), 378.
19 宋本腾; 褚月英; 王吉清; 郑安民; 邓风. 波谱学杂志, 2016, 33 (3), 378.
20 Li W. ; Zhang J. ; Qi C. S. Acta Phys. -Chim. Sin. 2015, 31 (9), 1690.
20 李巍; 张静; 戚传松. 物理化学学报, 2015, 31 (9), 1690.
21 Zhang X. X ; Chen Q. ; Hu W.H. ; Zhang J. B. Appl. Surf. Sci 2013, 286 (12), 47.
22 Lan R. ; Li H. R. ; Han S. J. Acta Phys. -Chim. Sin. 2005, 21 (11), 1295.
22 蓝蓉; 李浩然; 韩世钧. 物理化学学报, 2005, 21 (11), 1295.
23 Liao L. M. ; Huang X. ; Li J. F. Chin. J. Magn. Reson. 2016, 33 (3), 368.
23 廖立敏; 黄茜; 李建凤. 波谱学杂志, 2016, 33 (3), 368.
24 Wang Y. H. ; Li X. Y. ; Zeng Y. L. ; Meng L. P. ; Zhang X. Y. Acta Phys. -Chim. Sin. 2016, 32 (3), 671.
24 王月红; 李晓艳; 曾艳丽; 孟令鹏; 张雪英. 物理化学学报, 2016, 32 (3), 671.
25 Xu X. ; Xu Z.. ; Luo Y. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 420.
25 许旋; 徐志广; 罗一帆. 物理化学学报, 2002, 18 (5), 420.
26 Wang Y. N. ; Jin Q. ; Li H. D. ; Wang C. J. Chin. J. Magn. Reson. 2015, 32 (3), 528.
26 王燕妮; 金芩; 李慧丹; 王朝杰. 波谱学杂志, 2015, 32 (3), 528.
27 Mizuno K. ; Kimura Y. ; Morichika H. ; Nishimura Y. ; Shimada S. ; Maeda S. ; Imafuji S. ; Ochi T. J. Mol. Liq. 2000, 85 (1-2), 139.
28 Covington, A. K. ; Newman, K. E. Modern Aspects of Electrochemistry; Bockris, J. OM. ; Conway, B. E. ; Eds. ; Pergamon: Oxford, U. K. ; 1977; Vol. 12, pp 41-129.
29 Pople, J. A. ; Schneider, W. G. ; Barnstein, H. J. High Resolution NMR, 2nd ed. ; McGraw-Hill: New York, 1967;pp 16-136.
30 Selwood, P. W. Magnetochemistry, 1nd ed. ; Interscience: NewYork, 1943; pp 12-129.
31 Hinton, J. F. ; Wolinski, K. Ab initio GIAO MagneticShielding Tensor for Hydrogen-bonded Systems. InTheoretical Treatments of Hydrogen Bonding; Hadzi, D. ; Ed. ; Wiley: Chichester, U. K. ; 1997; p 75.
32 Chesnut, D. B. The Ab Initio Computation of NuclearMagnetic Resonance Chemical shielding. In Reviews in Computational Chemistry; Lepkowitz, K. B. , Boyd, D. B. , Eds. ; VCH Publishers: New York, 1996; Vol. 8, pp 245-297.
33 Fleischer, U. ; van Wüllen, C. ; Kutzelnigg, W. NMR Chemical Shift Computation: Ab Initio in Encyclopedia of Computational Chemistry; Wiley: New York, 1998; Vol. 3, pp 35-67.
34 Cheeseman J. R. ; Trucks G. W. ; Keith T. A. ; Frisch M. J. J. Chem. Phys. 1996, 104 (14), 5497.
35 Hohenberg P. ; Kohn W. Phys. Rev. B 1964, 136 (3), 864.
36 Kohn W. ; Sham L. J. Phys. Rev. A 1965, 137 (6A), 1697.
37 Holmes J. R. ; Kivelson D. ; Drinkard W. C. J. Am. Chem. Soc. 1962, 84 (24), 4677.
38 Forsyth M. ; Macfarlane D. R. J. Phys. Chem. 1990, 94 (17), 6889.
39 Gu Y. ; Kar T. ; Scheiner S. J. Am. Chem. Soc. 1999, 121 (40), 9411.
40 Nagamachi M. Y. ; Francesconi A. Z. J. Chem. Thermodynamics 2006, 38 (4), 461.
41 Dixit S. ; Crain J. ; Poon W. C. ; Finney J. L. ; Soper A. K. Nature 2002, 416 (6883), 829.
42 Mizuno K. ; Imafuji S. ; Fujiwara T. ; Ohta T. ; Tamiya Y. J. Phys. Chem. B. 2003, 107 (16), 3972.
43 Zana R. ; Eljebari M. J. J. Phys. Chem. 1993, 97 (42), 11134.
44 Nishi N. ; Koga K. ; Ohshima C. ; Yamamoto K. ; Nagashima U. ; Nagami K. J. Am. Chem. Soc. 1988, 110 (16), 5246.
45 D'Arrigo G. ; Teixeira J. J. Chem. Soc. Faraday Trans. 1990, 86 (9), 1503.
[1] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[2] Wenwu XU,Yi GAO. Thiolate-Protected Hollow Gold Nanospheres[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 770-775.
[3] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[4] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[5] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[6] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[9] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[10] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[11] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[12] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[13] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[14] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[15] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.