Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(10)>> 2042-2051     doi: 10.3866/PKU.WHXB201705125         中文摘要
Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System
HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun
State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Full text: PDF (2740KB) HTML Export: BibTeX | EndNote (RIS) Supporting Info

A photoinduced confined etching system was used for the unstressed chemical planarization of Cu. Cu deposits were found on the surface of TiO2 nanotubes of the tool during the photoinduced confined etching of the Cu workpiece. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the morphology and composition of the Cu deposits, and the mechanism of the photodeposition of Cu in the micro/nanoscale liquid layer between the tool and the workpiece was investigated. Moreover, a simulated cupric solution was used to study the effect of the Cu deposits during the photoinduced confined etching. Several routes including stirring and complexing agent were used to investigate the inhibition of Cu deposition on the surface of TiO2 nanotubes and the simultaneous effect on the etching of Cu workpiece. The results showed that the Cu deposits enhanced the photocatalytic performance of TiO2 nanotubes, but the mechanism of enhancement changed with the increase in Cu deposits. Inhibition of Cu deposition by improving mass transfer can lead to the increase in the etching of Cu; addition of complexing agent combined with enhanced mass-transfer can inhibit Cu deposition, while improving the planing effect. Thus, the choice of inhibition methods and conditions should balance the effect of the micro/nano liquid layer between the tool and workpiece on multiple chemical reactions and mass transfer processes. The results provide an important guiding significance for further regulation and optimization of the photoinduced confined etching system.



Keywords: Photo-induced confined etching   TiO2 nanotube arrays   ·   OH   Scavenging agent   Photo-deposition of Cu   Mass transfer  
Received: 2017-04-13 Accepted: 2017-05-02 Publication Date (Web): 2017-05-12
Corresponding Authors: ZHOU Jian-Zhang Email: jzzhou@xmu.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (91023043, 21021002, 91023006).

Cite this article: HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017,33 (10): 2042-2051.    doi: 10.3866/PKU.WHXB201705125

(1) Tian, Z. W.; Fen, Z. D.; Tian, Z. Q.; Zhuo, X. D.; Mu, J. Q.; Li, C. Z.; Lin, H. S.; Ren, B.; Xie, Z. X.; Hu, W. L. Faraday Discussions 1992, 94, 37. doi: 10.1039/FD9929400037
(2) Zhang, L.; Ma, X. Z.; Lin, M. X.; Lin, Y.; Cao, G. H.; Tang, J.; Tian, Z. W. J. Phys. Chem. B 2006, 110, 18432. doi: 10.1021/jp063110m
(3) Zu, Y. B.; Xie, L.; Mao, B. W.; Tian, Z. W. Electrochim. Acta 1998, 43, 1683. doi: 10.1016/S0013-4686(97)00301-0
(4) Fang, Q. Y.; Zhou, J. Z.; Zhan, D. P.; Shi, K.; Tian, Z. W.; Tian, Z. Q. Chem. Commun. 2013, 49, 6451. doi: 10.1039/c3cc42368a
(5) Montini, T.; Gombac, V.; Sordelli, L.; Delgado, J. J.; Chen, X.; Adami, G.; Fornasiero, P. ChemCatChem 2011, 3, 574. doi: 10.1002/cctc.201000289
(6) Lv, X. J.; Zhou, S. X.; Zhang, C.; Chang, H. X.; Chen, Y.; Fu, W. F. J. Mater. Chem. 2012, 22, 18542. doi: 10.1039/c2jm33325b
(7) Canterino, M.; Somma, I. D.; Marotta, R.; Andreozzi, R. Water Res. 2008, 42, 4498. doi: 10.1016/j.watres.2008.07.035
(8) Wu, N. L.; Lee, M. S. Int. J. Hydrog. Energy 2004, 29, 160. doi: 10.1016/j.ijhydene.2004.02.013
(9) Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Appl Catal B: Environ 2002, 37, 37. doi: 10.1016/S0926-3373(01)00322-8
(10) Bideau, M.; Claudel, B.; Faure, L.; Rachimoellah, M. Chem. Eng. Commun. 1990, 93, 167. doi: 10.1080/00986449008911444
(11) Foster, N. S.; Noble, R. D.; and Kovel, C. A. Environ. Sci. Technol. 1993, 34, 3865. doi: 10.1021/es00039a016
(12) Jacobs, J. W. M.; Kampers, F. W. H.; Rikken, J. M. G.; Bulle-Lieuwma, C. W. T.; Koningsberger, D. C. J. Electrochem. Soc. 1989, 136, 2914. doi: 10.1149/1.2096373
(13) Beranek, R.; Tsuchiya, H.; Sugishima, T.; Macak, J. M.; Taveira, L.; Fujimoto, S.; Kisch, H.; Schmuki, P. Appl. Phys. Lett. 2005, 87, 167. doi: 10.1063/1.2140085
(14) Xiong, Z. G.; Zhao, X. S. J. Mater. Chem. A 2013, 1, 7738. doi: 10.1039/c3ta11247k
(15) Tavares, M. C.; Machado, S. A. S.; Mazo, L. H. Electrochim. Acta 2001, 46, 4359. doi: 10.1016/S0013-4686(01)00726-5
(16) Kiss, T.; Sovago, I.; Gergely, A. Pure Appl. Chem., 1991, 63, 597. doi: 10.1351/pac199163040597
(17) Wood, A.; Giersig, M.; Mulvaney, P. J. Phys. Chem. B 2001, 105, 8810. doi: 10.1021/jp011576t
(18) Foster, N. S.; Lancaster, A. N.; Noble, R. D.; Koval, C. A. Ind. Eng. Chem. Res. 1995, 34, 3865. doi: 10.1021/ie00038a025
(19) Tafalla, D.; Salvador, P.; Benito, R. M. J. Electrochem. Soc. 1990, 137, 1810. doi: 10.1149/1.2086809
(20) Xin, B. F.; Wang, P.; Ding, D. D.; Liu, J.; Ren, Z. Y.; Fu, H. G. Appl. Surf. Sci. 2008, 254, 2569. doi: 10.1016/j.apsusc.2007.09.002
(21) Bessekhouad, Y.; Robert, D.; Weber, J. V. Catal. Today 2005, 101, 315. doi: 10.1016/j.cattod.2005.03.038
(22) Kabra, K.; Chaudhary, R.; Sawhney, R. L. J. Hazard. Mater. 2007, 149, 680. doi: 10.1016/j.jhazmat.2007.04.028
(23) Hu, Y.; Fang. Q. Y.; Zhou, J. Z.; Zhan, D. P.; Shi, K.; Tian, Z.Q.; Tian, Z. W. Acta Phys. -Chim. Sin., 2013, 29 (11), 2392.[胡艳, 方秋艳, 周剑章, 詹东平, 时康, 田中群, 田昭武. 物理化学学报, 2013, 29 (11), 2392.]doi: 10.3866/PKU.WHXB201309043
(24) Hickel, B.; Sehested, K. Radiat. Phys. Chem. 1992, 39, 355. doi: 10.1016/1359-0197(92)90244-A
(25) Qu, P.; Zhao, J. C.; Shen, T.; Hidaka, H. J. Mol. Catal. A: Chem. 1998, 129, 257. doi: 10.1016/S1381-1169(97)00185-4
(26) Kirino, O.; Enomoto, T. Precis. Eng. 2011, 35, 669. doi: 10.1016/j.precisioneng.2011.05.0

1. JI Tian-Yi, LIU Yan-Cheng, ZHAO Jian-Feng, XU Gang, WANG Wen-Feng, WU Ming-Hong.Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies[J]. Acta Phys. -Chim. Sin., 2017,33(4): 823-828
2. YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng.Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017,33(10): 1944-1959
3. QIN Yu-Cai, GAO Xiong-Hou, SHI Li-Fei, ZHANG Li, DUAN Lin-Hai, SONG Li-Juan.Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method[J]. Acta Phys. -Chim. Sin., 2016,32(2): 527-535
4. XU Juan, LIU Jia-Qin, LI Jing-Wei, WANG Yan, Lü Jun, WU Yu-Cheng.Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2545-2554
5. LI Min-Jie, DIAO Ling, KOU Li, LI Zhong-Gao, LU Wen-Cong.Hydroxyl Radical Reaction with the Guanine-Cytosine Base Pair: A Density Functional Theory Study[J]. Acta Phys. -Chim. Sin., 2015,31(6): 1007-1014
6. HU Long-Xing, XU Dan-Dan, ZOU Lian-Pei, YUAN Hang, HU Xing.Heterogeneous Fenton Oxidation of Refractory Dye Rhodamine B in Aqueous Solution with Mesoporous Fe/SBA-15[J]. Acta Phys. -Chim. Sin., 2015,31(4): 771-782
7. ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng.Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1535-1542
8. GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang.Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2014,30(3): 446-452
9. ZHANG You-Fa, WU Jie, YU Xin-Quan, LIANG Cai-Hua, WU Jun.Frost and Ice Transport on Superhydrophobic Copper Surfaces with Patterned Micro- and Nano-Structures[J]. Acta Phys. -Chim. Sin., 2014,30(10): 1970-1978
10. HU Yan, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun, TIAN Zhao-Wu.Factors Influencing Hydroxyl Radical Formation in a Photo-Induced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2013,29(11): 2392-2398
11. HOU Ruo-Bing, TANG Zong-Xiang, FAN You-Jun, YI Xiang-Hui, WANG Bei-Bei, SUN Yan-Li.Radicals Created fromthe Reactions of 2’-Deoxyadenosine-5’-monophosphate with Hydroxyl Radical[J]. Acta Phys. -Chim. Sin., 2013,29(09): 1937-1944
12. DAI Gao-Peng, LIU Su-Qin, PENG Rong, LUO Tian-Xiong.Fabrication of Bi2O3/Bi2O3 Nanotube Arrays with High Visible-Light Photocatalytic Activity by Impregnation-Decomposition Method[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2169-2174
13. WU Qi, SU Yu-Feng, SUN Lan, WANG Meng-Ye, WANG Ying-Ying, LIN Chang-Jian.Preparation and Visible Light Photocatalytic Activity of Fe-N Codoped TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2012,28(03): 635-640
14. HOU Ruo-Bing, SUN Yan-Li, WANG Bei-Bei.One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs[J]. Acta Phys. -Chim. Sin., 2012,28(01): 73-77
15. ZHANG Sheng-Han, LIANG Ke-Xin, TAN Yu.Preparation of TiO2 Nanotube Arrays with Different Cerium Mixing Morphology and Their Photoelectrochemical Response in Visible Light[J]. Acta Phys. -Chim. Sin., 2011,27(11): 2726-2732
16. LI Di, CHEN Hong-Chong, LI Jin-Hua, ZHOU Bao-Xue, CAI Wei-Min.Photoelectrocatalytic Performance and Reaction Mechanism of Different Organics upon Adsorption on a TiO2 Nanotube Array Electrode[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2153-2159
17. TANG Rui-Zhi, ZHANG Peng, LI Hai-Xia, LIU Yan-Cheng, WANG Wen-Feng.Pulse Radiolysis Study of the Reactions between Phenothiazine and CCl3OO·, ·OH[J]. Acta Phys. -Chim. Sin., 2011,27(08): 1975-1978
18. ZHANG Zhi-Yu, SANG Li-Xia, SUN Biao, ZHANG Xiao-Min, MA Chong-Fang.Kinetics and Electrochemical Impedance Properties of TiO2 Nanotube Array Photoelectrode[J]. Acta Phys. -Chim. Sin., 2010,26(11): 2935-2940
19. GENG Rong, ZHAO Guo-Hua, LIU Mei-Chuan, LEI Yan-Zhu.In situ ESR Study of Hydroxyl Radical Generation on a Boron Doped Diamond Film Electrode Surface[J]. Acta Phys. -Chim. Sin., 2010,26(06): 1493-1498
20. HOU Ruo-Bing; LI Wei-Wei; YI Xiang-Hui.Molecular Geometries and Electronic Structures of Adducts between 2’-Deoxycytidine-5’-monophosphate Acid and Hydroxyl Radical[J]. Acta Phys. -Chim. Sin., 2009,25(02): 291-298
21. LIU Ping; JIANG Yi-ming; GUO Feng; XIE Heng-bo; LI Jin.Studies on the Transport Behavior in Ag/TCNQ Thin Films[J]. Acta Phys. -Chim. Sin., 2005,21(10): 1073-1075
22. Meng Xiang-Ju;Xiao Feng-Shou.Novel Copper Phosphates with High Catalytic Activities under Mild Conditions[J]. Acta Phys. -Chim. Sin., 2004,20(08S): 939-945
23. Zheng Xu-Xu, Xu Jiang-He, Lin Zhi-Hue, Tan Shi-Yu.Mechanisms for the Elimination Reaction of the Addition Radical Formed by Hydroxyl Radical with Trichloroethylene and Perchloroethylene[J]. Acta Phys. -Chim. Sin., 2000,16(12): 1080-1085
24. Wei Zi-Dong,Guo He-Tong,Tang Zhi-Yuan.Numerical Analysis of the Gas Diffusion Layer Model of PAFC Air Electrode[J]. Acta Phys. -Chim. Sin., 1996,12(11): 1022-1026
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top