Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (10): 2042-2051    DOI: 10.3866/PKU.WHXB201705125
ARTICLE     
Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System
Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU*(),Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN
Download: HTML     PDF(2740KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A photoinduced confined etching system was used for the unstressed chemical planarization of Cu. Cu deposits were found on the surface of TiO2 nanotubes of the tool during the photoinduced confined etching of the Cu workpiece. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the morphology and composition of the Cu deposits, and the mechanism of the photodeposition of Cu in the micro/nanoscale liquid layer between the tool and the workpiece was investigated. Moreover, a simulated cupric solution was used to study the effect of the Cu deposits during the photoinduced confined etching. Several routes including stirring and complexing agent were used to investigate the inhibition of Cu deposition on the surface of TiO2 nanotubes and the simultaneous effect on the etching of Cu workpiece. The results showed that the Cu deposits enhanced the photocatalytic performance of TiO2 nanotubes, but the mechanism of enhancement changed with the increase in Cu deposits. Inhibition of Cu deposition by improving mass transfer can lead to the increase in the etching of Cu; addition of complexing agent combined with enhanced mass-transfer can inhibit Cu deposition, while improving the planing effect. Thus, the choice of inhibition methods and conditions should balance the effect of the micro/nano liquid layer between the tool and workpiece on multiple chemical reactions and mass transfer processes. The results provide an important guiding significance for further regulation and optimization of the photoinduced confined etching system.



Key wordsPhoto-induced confined etching      TiO2 nanotube arrays      ·OH      Scavenging agent      Photo-deposition of Cu      Mass transfer     
Received: 13 April 2017      Published: 12 May 2017
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(91023043);the National Natural Science Foundation of China(21021002);the National Natural Science Foundation of China(91023006)
Corresponding Authors: Jian-Zhang ZHOU     E-mail: jzzhou@xmu.edu.cn
Cite this article:

Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201705125     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I10/2042

Fig 1 Experimental installation of photoinduced confined etching of Cu.
Fig 2 SEM and EDS images of TiO2 NTs after photoinduced confined etching. (a, c) before etching, (b, d) after etching. 1% (w) glycine solution; pH ~5.8.
Fig 3 Surface XPS spectra of TiO2 NTs after photoinduced confined etching. (a) Cu 2p, (b) Cu LMM.
Fig 4 (a) Mechanism of the etching and photo-deposition of Cu in photoinduced confined etching system (b) Energy band and Fermi level of Cu2O, TiO2 and Cu, pH = 7.
Fig 5 SEM of photo-reduced Cu/TiO2 NTs under different irradiation times. (a) 10 min; (b) 30 min; (c) 60 min; (d) 60 min; Solution contained 1% (w) glycine and 1.25% (w) Cu(NO3)2; (a, b, c) pH ~2.5; (d) pH ~5.8.
Fig 6 Absorption spectra of TiO2 NTs and Cu/TiO2 NTs.
Fig 7 Transient photocurrent response of (a) TiO2 NTs; (b) Cu/TiO2 NTs under different irradiation times. 0 V potential; White light irradiation; Solution contained 0.01 mol·L?1 NaOH; 0.08 cm2 irradiation area.
Fig 8 SEM of TiO2 NTs after photoinduced confined etching. (a) 0 r·min-1, 1% (w) glycine; (b) 1000 r·min-1, 1% (w) glycine; (c) 0 r·min-1, 1% (w) glycine + 0.05 mol·L-1urea; (d) 1000 r·min-1, 1% (w) glycine + 0.05 mol·L-1 urea.
1 Tian Z. W. ; Fen Z. D. ; Tian Z. Q. ; Zhuo X. D. ; Mu J. Q. ; Li C. Z. ; Lin H. S. ; Ren B. ; Xie Z. X. ; Hu W. L. Faraday Discussions 1992, 94, 37.
2 Zhang L. ; Ma X. Z. ; Lin M. X. ; Lin Y. ; Cao G. H. ; Tang J. ; Tian Z. W. J.Phys. Chem. B 2006, 110, 18432.
3 Zu Y. B. ; Xie L. ; Mao B. W. ; Tian Z. W. Electrochim. Acta 1998, 43, 1683.
4 Fang Q. Y. ; Zhou J. Z. ; Zhan D. P. ; Shi K. ; Tian Z. W. ; Tian Z. Q. Chem. Commun. 2013, 49, 6451.
5 Montini T. ; Gombac V. ; Sordelli L. ; Delgado J. J. ; Chen X. ; Adami G. ; Fornasiero P. ChemCatChem 2011, 3, 574.
6 Lv X. J. ; Zhou S. X. ; Zhang C. ; Chang H. X. ; Chen Y. ; Fu W. F. J.Mater. Chem. 2012, 22, 18542.
7 Canterino M. ; Somma I. D. ; Marotta R. ; Andreozzi R. Water Res. 2008, 42, 4498.
8 Wu N. L. ; Lee M. S. Int. J. Hydrog. Energy 2004, 29, 160.
9 Tseng I. H. ; Chang W. C. ; Wu J. C. S. Appl Catal B: Environ 2002, 37, 37.
10 Bideau M. ; Claudel B. ; Faure L. ; Rachimoellah M. Chem. Eng. Commun. 1990, 93, 167.
11 Foster N. S. ; Noble R. D. ; Kovel C. A. Environ. Sci. Technol. 1993, 34, 3865.
12 Jacobs J. W. M. ; Kampers F. W. H. ; Rikken J. M. G. ; Bulle-Lieuwma C. W. T. ; Koningsberger D. C. J.Electrochem. Soc. 1989, 136, 2914.
13 Beranek R. ; Tsuchiya H. ; Sugishima T. ; Macak J. M. ; Taveira L. ; Fujimoto S. ; Kisch H. ; Schmuki P. Appl. Phys. Lett. 2005, 87, 167.
14 Xiong Z. G. ; Zhao X. S. J.Mater. Chem. A 2013, 1, 7738.
15 Tavares M. C. ; Machado S. A. S. ; Mazo L. H. Electrochim. Acta 2001, 46, 4359.
16 Kiss T. ; Sovago I. ; Gergely A. Pure Appl. Chem. 1991, 63, 597.
17 Wood A. ; Giersig M. ; Mulvaney P. J.Phys. Chem. B 2001, 105, 8810.
18 Foster N. S. ; Lancaster A. N. ; Noble R. D. ; Koval C. A. Ind. Eng. Chem. Res. 1995, 34, 3865.
19 Tafalla D. ; Salvador P. ; Benito R. M. J.Electrochem. Soc. 1990, 137, 1810.
20 Xin B. F. ; Wang P. ; Ding D. D. ; Liu J. ; Ren Z. Y. ; Fu H. G. Appl. Surf. Sci. 2008, 254, 2569.
21 Bessekhouad Y. ; Robert D. ; Weber J. V. Catal. Today 2005, 101, 315.
22 Kabra K. ; Chaudhary R. ; Sawhney R. L. J.Hazard. Mater. 2007, 149, 680.
23 Hu Y. ; Fang. Q. Y. ; Zhou J. Z. ; Zhan D. P. ; Shi K. ; Tian Z.Q. ; Tian Z. W. Acta Phys. -Chim. Sin. 2013, 29 (11), 2392.
23 胡艳; 方秋艳; 周剑章; 詹东平; 时康; 田中群; 田昭武. 物理化学学报, 2013, 29 (11), 2392.
24 Hickel B. ; Sehested K. Radiat. Phys. Chem. 1992, 39, 355.
25 Qu P. ; Zhao J. C. ; Shen T. ; Hidaka H. J.Mol. Catal. A: Chem. 1998, 129, 257.
26 Kirino O. ; Enomoto T. Precis. Eng. 2011, 35, 669.
[1] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[2] Yu-Cai QIN,Xiong-Hou GAO,Li-Fei SHI,Li ZHANG,Lin-Hai DUAN,Li-Juan SONG. Discrimination of the Mass Transfer Performance of In situ Crystallization FCC Catalysts by the Frequency Response Method[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 527-535.
[3] HU Yan, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun, TIAN Zhao-Wu. Factors Influencing Hydroxyl Radical Formation in a Photo-Induced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2392-2398.
[4] DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 44-50.
[5] WANG Li-Na; LIU Zhong-Wei; ZHU Ai-Min; ZHAO Guo-Li; XU Yong. Numerical Simulation of·OH and HO2· Radicals in Dielectric Barrier Discharge Plasmas[J]. Acta Phys. -Chim. Sin., 2008, 24(08): 1400-1404.
[6] TIAN Yan; HE Tian-Jing; CHEN Dong-Ming; LIU Fan-Chen. Reaction Mechanism and Kinetics for the Reaction of ·OH+CH3CN[J]. Acta Phys. -Chim. Sin., 2008, 24(04): 587-594.
[7] Wei Zi-Dong,Guo He-Tong,Tang Zhi-Yuan. Numerical Analysis of the Gas Diffusion Layer Model of PAFC Air Electrode[J]. Acta Phys. -Chim. Sin., 1996, 12(11): 1022-1026.